Sorting (cont.)

s

Sorting into categories...

Quicksort

Quicksort

» A “partition-exchange” sorting method:

Partition an original array into: Eg. 2510 57 48 37 12 92 86 33
(1) a subarray of small elements —> 12 10 25 48 37 57 92 86 33
(2) a single value in-between (1) and (3) A possible arrangement:

simply use first element (ie.
(3) a subarray of large elements 25)

for partitioning

Then patrtition (1) and (3) independently
using the same method.

x[0..N-1]
« For partitioning we need to choose a — S —
value a. (simply select a = x[0]) Eg. 251057 48 37 12 92 86 33
« During a partition process: pairwise => 121025 48 37 57 92 86 33
exchanges of elements. N

a

Original:

Partitioning:

Quicksort

25 10 57 48 37 12 92 86 33
Select a = 25

Use 2 indices:
down up
25 10 57 48 37 12 92 86 33

Move down towards up until xj[down]>25
Move up towards down until x[up]<=25

=) down up ¢mm
25 10 57 48 37 12 92 86 33

down up
25 10 12 48 37 57 92 86 33 sSwap
up down

25 10 12 48 37 57 92 86 33 Continue repeat (*) until up

crosses down (ie. down >=up)

12 10 25 48 37 57 92 86 33 up is at right-most of smaller

partition, so swap a with x[up]

Quicksort

Original 2510 57 48;? 12 92 86 33

12 10 25 48 37 57 92 86 33

=> 12 10]25]48 37 57 92 86 33

L
[10 12| 25|33 37 48 92 86 57

=> 10 12/ 25|33 37|48 92@57
10 12| 25|33 37|48|57 86 92

=> 101225133 |37|48|57 86192

W
110 12|25/ 33]37]48|57 86[92]

=> 110 12| 2533 37| 48|57]|86|92

=> 110 12]25]33]37]48]57]|86]92| € Sorted

Quicksort

void quick_sort(int X[], int idLeftmost, int idRightmost)
[* Sort x[idLeftmost].. x[idRightmost] into ascending numerical order. */

{ intj;
if (idLeftmost >=idRightmost)
return; /* array is sorted or empty*/

partition(x, idLeftmost, idRightmost, &));
[* partition the elements of the subarray such that one of the elements
(possibly x[idLeftmost]) is now at x[j] (j is an output parameter) and
1) x[i] <= x][j] for idLeftmost <=i <
2) x[i] >= x[j] for j<i<= idRightmost
x[j] is now at its final position */

quick_sort(x, idLeftmost, j-1);
[* recursively sort the subarray between positions idLeftmost and j-1 */

quick_sort(x, j+1, idRightmost);
/* recursively sort the subarray between positions j+1 and idRightmost */

Quicksort

void partition(int x[], int idLeftMost, int idRightMost, int *pj)

{ int down, up, a, temp;
a = x[idLeftMost];
up = idRightMost;
down = idLeftMost;

while (down < up)
{ while ((x[down] <=a) && (down < idRightMost))

down++; /* move up the array */
while (x[up] > a)
up--; /* move down the array */
if (down < up) /* interchange x[down] and x[up] */
{ temp =x[down]; x[down] =Xx[up]; Xx[up] =temp;
} }
x[idLeftMost] = x[up];
X[up] = a;

*nj = up;
}pl Y

Quicksort

Analysis of Quicksort
* The best case complexity is O(N log N)

Each time when a is chosen (as the first element) in a partition, it is the
median value in the partition. => the depth of the “tree” is O(log N).

* In worst case, it is O(N?).
For most straightforward implementation of Quicksort, the worst case
is achieved for an input array that is already in order.

Each time when a is chosen (as the first element) in a partition, it is the
smallest (or largest) value in the partition. => the depth of the “tree” is
O(N).

* When a subarray has gotten down to some size M, it becomes faster
to sort it by straight insertion.

» Fastest sorting algorithm for large N.

Merge Sort

* a divide-and-conquer approach

Merge Sort

 split the array into two roughly equal subarrays

» sort the subarrays by recursive applications of
Mergesort and merge the sorted subarrays

@ Suppose there are some people called Mr.
MergeSort. They are identical.

[*]

They don’t know how to do sorting.

@ But each of them has a secretary called Mr.
Merge, who can merge 2 sorted sequences
into one sorted sequence.

Merge Sort

At the beginning, a “So complicated!!, I'll
Mr. MergeSort is > 2 & L2k split them and call other
called to sort: Mr. MergeSortsto
handle.”
Then 2 other Mr. Both of them say “ Still
MergeSorts are 5 2 4 7|11 32 6] ypplicated Il split
called to sort: them and call other Mr.
MergeSorts to handle.”
Then 4 other Mr. All of them say “Still
MergeSorts are 2/14 7|11 3 complicated! I'll split
called to sort: them and call other Mr.

MergeSorts to handle.”
Then 8 other Mr.

ey
|~
=
W
Nf— [
[ol— o

L

(O f— [

MergeSorts are I :Allh_of_them say
called to sort: Thisiseasy. No

need to do anything.'="s

Merge Sort
Then thefirst Mr.

MergeSort succeeds 12234567

and returns. / \
Then each of the 2

Thefirst Mr. MergeSort
calls his secretary Mr.
Merge to merge the
returned numbers

Both Mr. MergeSorts
Mr. MergeSorts 245 7|12 6 call their secretaries Mr.
returns the merged Merge to merge the
numbers. returned numbers
Thenthe4 Mr. The 4 Mr. MergeSorts
MergeSorts returns the 5(14 7|[1 3 6 cal their secretaries Mr.

merged numbers.
returned numbers

Then the 8 Mr.

MergeSorts return. All of them say

‘Thisiseasy. No
need do anything.’

3
2
/ Merge to merge the

[o—0. [N
[N |

(s F—0u.
|~ |

=
[}—"

Merge Sort

void MERGE-SORT(x, Lower_bound, Upper_bound)

Sorts the elements:
X= 1.5 2 47 1 3 2 6.

Loweﬁ_bound Upper¢_bound

void merge-sort(int x[], int lower_bound, int upper_bound)
{ int mid,;

if (lower_bound != upper_bound)

{ mid = (lower_bound + upper_bound) / 2;
merge-sort(x, lower_bound, mid);
merge-sort(x, mid+1, upper_bound);

) merge(x, lower_bound, mid, upper_bound);

}

-~

AR Merge Sort

void merge(int x[], int lower_bound, int mid, int upper_bound)

-- merges 2 sorted sequences:

L: Xlower_bound’ Xlower_bound+1’ Xmid

R: Xmid+1, ’ Xmid+2’ Xupper_bound

Step 1: Continuously copy the smallest
onefromL and R to aresult list
until either L or R isfinished.

Step 2: L may still have some numbers not
yet copied. So copy them in order.

Step 3: R may still have some numbers not
yet copied. So copy them in order.

Step 4: Copy the result list back to x.

L

R

— "

X=1.2457

1236 .

0 0

XIower_bound mid

X 0

upper_bound

X=1.2457

1236 .

Result=) 1 2234567..

/* Assuming that x[lower_bound..mid] and x[mid+1..upper_bound] are sorted, */
/* this procedure merges the two into x[lower_bound..upper_bound] */

void Merge(int x[], int lower_bound, int mid, int upper_bound)

{ int idLeft, idRight, idResult, result[10]; int i;
idLeft = lower_bound;
idRight = mid+1;

// Continuously remove the smallest one from either partitions until any
I/l one partition is finished.

for (idResult = lower_bound; idLeft <= mid && idRight <= upper_bound; idResult++)
{ if (x[idLeft] <= x[idRight])

result[idResult] = x[idLeft++];
else
} result[idResult] = x[idRight++];
//Copy remaining elements in any unfinished partition to the result list.
while (idLeft <= mid)

result[idResult++] = x[idLeft++];

while (idRight <= upper_bound)
result[idResult++] = x[idRight++];

//Copy the result list back to x
for (i=lower_bound; i<=upper_bound; i++)
x[i] = result[i];

Analysis of Merge Sort

void merge(..)

To merge n numbers from 2 sorted
arrays, the running time is roughly
proportional to n.

Then, what is the
complexity of Merge Sort?

To sort x[0..n-1] using Merge Sort,
we call MERGE-SORT(x,0,n-1)

time to sort n numbers.
MERGE-SORT involves:

2 recursive calls to itself (ie. 2 * T(n/2)),
plus a call to MERGE (ie. c*n, where c
is a constant).

k (a constant) if n=1
() ={ _
(" 2T(n/2)+ c*n if n>1

Analysis of Merge Sort

_ 1 k(aconstant) if n=1
T ={ 2T(n/2)+cn if n>1

Expanding the recursion tree:

T(n) cn cn
T(n/2) T(n/2) cn/2 cn/2

/N

T(n/4) T(n/4) T(n/4) T(n/4)

Analysis of Merge Sort
Fully Expanded recursion

tree: cn IiTiio- en
T T
cn/2 cn/2 ~TIIiii- on
/N /N
(Igrol%er‘]) cn/4 cnf4d cn/4 cn/4 - N
ANAR AN
j kil k*l! o1 k1 k!*l k*!1 |!<*1 k’il r2z22==x kn
o _/
\n/ Total: cnlgn +kn

ie. T(n) = O)

