
Sorting (cont.)

Quicksort

• For partitioning we need to choose a
value a. (simply select a = x[0])

• During a partition process: pairwise
exchanges of elements.

Quicksort

• A “partition-exchange” sorting method:
Partition an original array into:
(1) a subarray of small elements
(2) a single value in-between (1) and (3)
(3) a subarray of large elements
Then partition (1) and (3) independently
using the same method.

Eg. 25 10 57 48 37 12 92 86 33

=> 12 10 25 48 37 57 92 86 33

Eg. 25 10 57 48 37 12 92 86 33

=> 12 10 25 48 37 57 92 86 33

x[0..N-1]

a

A possible arrangement:
simply use first element (ie.
25)
for partitioning

Original: 25 10 57 48 37 12 92 86 33

Partitioning: Select a = 25

Use 2 indices:
down up

25 10 57 48 37 12 92 86 33

down up
25 10 12 48 37 57 92 86 33

up down
25 10 12 48 37 57 92 86 33

12 10 25 48 37 57 92 86 33

Move down towards up until x[down]>25
Move up towards down until x[up]<=25 (*)

Swap

Continue repeat (*) until up
crosses down (ie. down >= up)

up is at right-most of smaller
partition, so swap a with x[up]

Quicksort

down up
25 10 57 48 37 12 92 86 33

Quicksort
25 10 57 48 37 12 92 86 33

12 10 25 48 37 57 92 86 33

10 12 25 33 37 48 92 86 57

12 10 25 48 37 57 92 86 33=>

4810 12 25 33 37 57 86 92

10 12 25 33 37 48 92 86 57=>

48 9233 3710 12 25 57 86

=> 4837 9257 8610 12 25 33

924833 3710 12 25 57 86=>
=> 924833 3710 12 25 57 86 Sorted

Original

Quicksort
void quick_sort(int x[], int idLeftmost, int idRightmost)
/* Sort x[idLeftmost].. x[idRightmost] into ascending numerical order. */
{ int j;

if (idLeftmost >= idRightmost)
return; /* array is sorted or empty*/

partition(x, idLeftmost, idRightmost, &j);
/* partition the elements of the subarray such that one of the elements

(possibly x[idLeftmost]) is now at x[j] (j is an output parameter) and
1) x[i] <= x[j] for idLeftmost <= i < j
2) x[i] >= x[j] for j<i<= idRightmost
x[j] is now at its final position */

quick_sort(x, idLeftmost, j-1);
/* recursively sort the subarray between positions idLeftmost and j-1 */

quick_sort(x, j+1, idRightmost);
/* recursively sort the subarray between positions j+1 and idRightmost */

}

void partition(int x[], int idLeftMost, int idRightMost, int *pj)
{ int down, up, a, temp;

a = x[idLeftMost];
up = idRightMost;
down = idLeftMost;

x[idLeftMost] = x[up];
x[up] = a;
*pj = up;}

Quicksort
void partition(int x[], int idLeftMost, int idRightMost, int *pj)
{ int down, up, a, temp;

a = x[idLeftMost];
up = idRightMost;
down = idLeftMost;
while (down < up)
{ while ((x[down] <= a) && (down < idRightMost))

down++; /* move up the array */
while (x[up] > a)

up--; /* move down the array */

if (down < up) /* interchange x[down] and x[up] */
{ temp = x[down]; x[down] = x[up]; x[up] = temp;
}}

x[idLeftMost] = x[up];
x[up] = a;
*pj = up;}

Quicksort
Analysis of Quicksort
• The best case complexity is O(N log N)

Each time when a is chosen (as the first element) in a partition, it is the
median value in the partition. => the depth of the “tree” is O(log N).

• In worst case, it is O(N2).
For most straightforward implementation of Quicksort, the worst case
is achieved for an input array that is already in order.

Each time when a is chosen (as the first element) in a partition, it is the
smallest (or largest) value in the partition. => the depth of the “tree” is
O(N).

• When a subarray has gotten down to some size M, it becomes faster
to sort it by straight insertion.

• Fastest sorting algorithm for large N.

Merge Sort

Suppose there are some people called Mr.
MergeSort. They are identical.
They don’t know how to do sorting.
But each of them has a secretary called Mr.
Merge, who can merge 2 sorted sequences
into one sorted sequence.

• a divide-and-conquer approach
• split the array into two roughly equal subarrays
• sort the subarrays by recursive applications of

Mergesort and merge the sorted subarrays

Merge Sort

Merge Sort
At the beginning, a
Mr. MergeSort is
called to sort:

5 2 4 7 1 3 2 6

Then 2 other Mr.
MergeSorts are
called to sort:

Both of them say “Still
complicated! I’ll split
them and call other Mr.
MergeSorts to handle.”

Then 4 other Mr.
MergeSorts are
called to sort:

All of them say “Still
complicated! I’ll split
them and call other Mr.
MergeSorts to handle.”

Then 8 other Mr.
MergeSorts are
called to sort:

5 2 4 7 1 3 2 6

5 2 2 64 7 1 3

5 2 4 7 1 3 2 6

“So complicated!!, I’ll
split them and call other
Mr. MergeSorts to
handle.”

All of them say
‘This is easy. No
need to do anything.’

Merge Sort
Then the first Mr.
MergeSort succeeds
and returns.

Then each of the 2
Mr. MergeSorts
returns the merged
numbers.

Then the 4 Mr.
MergeSorts returns the
merged numbers.

Then the 8 Mr.
MergeSorts return.

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 2 64 7 1 3

5 2 4 7 1 3 2 6

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 2 64 7 1 3

5 2 4 7 1 3 2 6
All of them say
‘This is easy. No
need do anything.’

Both Mr. MergeSorts
call their secretaries Mr.
Merge to merge the
returned numbers

The 4 Mr. MergeSorts
call their secretaries Mr.
Merge to merge the
returned numbers

The first Mr. MergeSort
calls his secretary Mr.
Merge to merge the
returned numbers

Merge Sort
void MERGE-SORT(x, Lower_bound, Upper_bound)

Sorts the elements:

.. 5 2 4 7 1 3 2 6 ..x =

Lower_bound Upper_bound

void merge-sort(int x[], int lower_bound, int upper_bound)
{ int mid;

if (lower_bound != upper_bound)
{ mid = (lower_bound + upper_bound) / 2;

merge-sort(x, lower_bound, mid);
merge-sort(x, mid+1, upper_bound);
merge(x, lower_bound, mid, upper_bound);}}

Merge Sort
void merge(int x[], int lower_bound, int mid, int upper_bound)

-- merges 2 sorted sequences:
L: xlower_bound, xlower_bound+1, … xmid
R: xmid+1, , xmid+2, … xupper_bound

.. 2 4 5 7 1 2 3 6 ..x =
xlower_bound Xupper_boundxmid

Step 1: Continuously copy the smallest
one from L and R to a result list
until either L or R is finished.

Step 2: L may still have some numbers not
yet copied. So copy them in order.

Step 3: R may still have some numbers not
yet copied. So copy them in order.

L R

Step 4: Copy the result list back to x.

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2 2 3Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2 2 3 4Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2 2 3 4 5Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2 2 3 4 5 6Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2 2 3 4 5Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1 2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =

.. 1 2 2 3 4 5 6 7Result = ..

/* Assuming that x[lower_bound..mid] and x[mid+1..upper_bound] are sorted, */
/* this procedure merges the two into x[lower_bound..upper_bound] */
void merge(int x[], int lower_bound, int mid, int upper_bound)
{ int idLeft, idRight, idResult, result[10]; int i;

idLeft = lower_bound;
idRight = mid+1;

// Continuously remove the smallest one from either partitions until any
// one partition is finished.
for (idResult = lower_bound; idLeft <= mid && idRight <= upper_bound; idResult++)
{ if (x[idLeft] <= x[idRight])

result[idResult] = x[idLeft++];
else

result[idResult] = x[idRight++];}
//Copy remaining elements in any unfinished partition to the result list.
while (idLeft <= mid)

result[idResult++] = x[idLeft++];
while (idRight <= upper_bound)

result[idResult++] = x[idRight++];
//Copy the result list back to x
for (i=lower_bound; i<=upper_bound; i++)

x[i] = result[i];}

Analysis of Merge Sort

Let T(n) be the MERGE-SORT running
time to sort n numbers.
MERGE-SORT involves:
2 recursive calls to itself (ie. 2 * T(n/2)),
plus a call to MERGE (ie. c*n, where c
is a constant).

void merge(..)
To merge n numbers from 2 sorted
arrays, the running time is roughly
proportional to n.

Then, what is the
complexity of Merge Sort?

To sort x[0..n-1] using Merge Sort,
we call MERGE-SORT(x,0,n-1)

void merge-sort(int x[], int low_bound, int up_bound)
{ int mid;

if (low_bound != up_bound)
{ mid = (low_bound + up_bound) / 2;

merge-sort(x, low_bound, mid);
merge-sort(x, mid+1, up_bound);
merge(x, low_bound, mid, up_bound);}}

k (a constant) if n=1

2T(n/2)+ c*n if n>1
T(n) =

The Running time:

T(n)

Expanding the recursion tree:

cn

T(n/2) T(n/2)

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

k (a constant) if n=1
2T(n/2)+cn if n>1T(n) =

Analysis of Merge Sort

Fully Expanded recursion
tree: cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

k*1 k*1 k*1 k*1 k*1 k*1 k*1 k*1

cn

cn

cn

kn

n

Log2n
(or lg n)

Total: cn lg n + kn
ie. T(n) = O(_____)

Analysis of Merge Sort

