
Sorting (cont.)

Quicksort

• For partitioning we need to choose a 
value a.  (simply select a = x[0])

• During a partition process: pairwise 
exchanges of elements.

Quicksort

• A “partition-exchange” sorting method: 
Partition an original array into: 
(1) a subarray of small elements
(2) a single value in-between (1) and (3)
(3) a subarray of large elements
Then partition (1) and (3) independently 
using the same method. 

Eg. 25 10 57 48 37 12 92 86 33

=> 12 10 25 48 37 57 92 86 33

Eg. 25 10 57 48 37 12 92 86 33

=> 12 10 25 48 37 57 92 86 33

x[0..N-1]

a

A possible arrangement:
simply use first element (ie. 
25)
for partitioning



Original: 25 10 57 48 37 12 92 86 33

Partitioning:     Select a = 25

Use 2 indices:
down up

25 10 57 48 37 12 92 86 33

down up
25 10 12 48 37 57 92 86 33

up down
25 10 12 48 37 57 92 86 33

12 10 25 48 37 57 92 86 33

Move down towards up until x[down]>25
Move up towards down until x[up]<=25 (*)

Swap

Continue repeat (*) until up
crosses down (ie. down >= up)

up is at right-most of smaller 
partition, so swap a with x[up]

Quicksort

down up
25 10 57 48 37 12 92 86 33

Quicksort
25 10 57 48 37 12 92 86 33

12 10 25 48 37 57 92 86 33

10 12 25 33 37 48 92 86 57

12 10 25 48 37 57 92 86 33=>

4810 12 25 33 37 57 86 92

10 12 25 33 37 48 92 86 57=>

48 9233 3710 12 25 57 86

=> 4837 9257 8610 12 25 33

924833 3710 12 25 57 86=>
=> 924833 3710 12 25 57 86 Sorted

Original



Quicksort
void quick_sort(int x[ ], int idLeftmost, int idRightmost)
/* Sort x[idLeftmost].. x[idRightmost] into ascending numerical order. */
{ int j;

if (idLeftmost >= idRightmost)
return; /* array is sorted or empty*/

partition(x, idLeftmost, idRightmost, &j);
/* partition the elements of the subarray such that one of the elements

(possibly x[idLeftmost]) is now at x[j] (j is an output parameter) and
1) x[i] <= x[j] for idLeftmost <= i < j
2) x[i] >= x[j] for j<i<= idRightmost
x[j] is now at its final position */

quick_sort(x, idLeftmost, j-1); 
/* recursively sort the subarray between positions idLeftmost and j-1 */

quick_sort(x, j+1, idRightmost); 
/* recursively sort the subarray between positions j+1 and idRightmost */

}

void partition(int x[ ], int idLeftMost, int idRightMost, int *pj)
{ int down, up, a, temp;

a = x[idLeftMost]; 
up = idRightMost;
down = idLeftMost;

x[idLeftMost] = x[up];
x[up] = a;
*pj = up;}

Quicksort
void partition(int x[ ], int idLeftMost, int idRightMost, int *pj)
{ int down, up, a, temp;

a = x[idLeftMost]; 
up = idRightMost;
down = idLeftMost;
while (down < up)
{ while ((x[down] <= a) && (down < idRightMost))

down++; /* move up the array */
while (x[up] > a)

up--; /* move down the array */

if (down < up) /* interchange x[down] and x[up] */
{ temp = x[down];   x[down] = x[up];   x[up] = temp;
}}

x[idLeftMost] = x[up];
x[up] = a;
*pj = up;}



Quicksort
Analysis of Quicksort
• The best case complexity is O(N log N)

Each time when a is chosen (as the first element) in a partition, it is the 
median value in the partition. => the depth of the “tree” is O(log N).

• In worst case, it is O(N2).
For most straightforward implementation of Quicksort, the worst case 
is achieved for an input array that is already in order.

Each time when a is chosen (as the first element) in a partition, it is the 
smallest (or largest) value in the partition. => the depth of the “tree” is 
O(N).

• When a subarray has gotten down to some size M, it becomes faster 
to sort it by straight insertion.

• Fastest sorting algorithm for large N.

Merge Sort

Suppose there are some people called Mr. 
MergeSort.  They are identical.
They don’t know how to do sorting.
But each of them has a secretary called Mr. 
Merge, who can merge 2 sorted sequences 
into one sorted sequence.

• a divide-and-conquer approach
• split the array into two roughly equal subarrays
• sort the subarrays by recursive applications of 

Mergesort and merge the sorted subarrays

Merge Sort



Merge Sort
At the beginning, a 
Mr. MergeSort is 
called to sort: 

5   2   4   7   1   3   2   6

Then 2 other Mr. 
MergeSorts are 
called to sort: 

Both of them say “Still 
complicated!  I’ll split 
them and call other Mr. 
MergeSorts to handle.”

Then 4 other Mr. 
MergeSorts are 
called to sort: 

All of them say “Still 
complicated!  I’ll split 
them and call other Mr. 
MergeSorts to handle.”

Then 8 other Mr. 
MergeSorts are 
called to sort: 

5   2   4   7 1   3   2   6

5   2 2   64   7 1   3

5 2 4 7 1 3 2 6

“So complicated!!, I’ll 
split them and call other 
Mr. MergeSorts to 
handle.”

All of them say 
‘This is easy.  No 
need to do anything.’ 

Merge Sort
Then the first Mr. 
MergeSort succeeds 
and returns.

Then each of the 2 
Mr. MergeSorts 
returns the merged 
numbers.

Then the 4 Mr. 
MergeSorts returns the 
merged numbers.

Then the 8 Mr. 
MergeSorts return.

5   2   4   7   1   3   2   6

5   2   4   7 1   3   2   6

5   2 2   64   7 1   3

5 2 4 7 1 3 2 6

1   2   2   3   4   5   6   7

2   4   5   7 1   2   3   6

2   5 2   64   7 1   3

5 2 4 7 1 3 2 6
All of them say 
‘This is easy.  No 
need do anything.’

Both Mr. MergeSorts 
call their secretaries Mr. 
Merge to merge the 
returned numbers

The 4 Mr. MergeSorts 
call their secretaries Mr. 
Merge to merge the 
returned numbers

The first Mr. MergeSort
calls his secretary Mr. 
Merge to merge the 
returned numbers



Merge Sort
void MERGE-SORT(x, Lower_bound, Upper_bound)

Sorts the elements:

..  5    2    4    7    1    3    2    6  ..x =

Lower_bound Upper_bound

void merge-sort(int x[ ], int lower_bound, int upper_bound)
{ int mid;

if (lower_bound != upper_bound)
{ mid = (lower_bound + upper_bound) / 2;

merge-sort(x, lower_bound, mid);
merge-sort(x, mid+1, upper_bound);
merge(x, lower_bound, mid, upper_bound);}}

Merge Sort
void merge(int x[ ], int lower_bound, int mid, int upper_bound)

-- merges 2 sorted sequences: 
L: xlower_bound, xlower_bound+1, … xmid
R: xmid+1, , xmid+2, … xupper_bound

..  2  4  5  7  1  2  3  6  ..x =
xlower_bound Xupper_boundxmid

Step 1: Continuously copy the smallest 
one from L and R to a result list 
until either L or R is finished.

Step 2: L may still have some numbers not 
yet copied.  So copy them in order.

Step 3: R may still have some numbers not 
yet copied.  So copy them in order.

L R

Step 4: Copy the result list back to x.

.. 2  4  5  7  1  2  3  6  ..x =
idL idR

.. Result =

idResult

..

.. 2  4  5  7 1 2  3  6  ..x =
idL idR

.. 1Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4  5  7 1 2 3  6  ..x =
idL idR

.. 1  2  2Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4  5  7 1 2 3 6  ..x =
idL idR

.. 1  2  2  3Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4 5  7 1 2 3 6  ..x =
idL idR

.. 1  2  2  3  4Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4 5 7 1 2 3 6  ..x =
idL idR

.. 1  2  2  3  4  5Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =
idL idR

.. 1  2  2  3  4  5  6Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4 5 7 1 2 3 6  ..x =
idL idR

.. 1  2  2  3  4  5Result =

idResult

..

.. 2 4  5  7 1 2  3  6  ..x =
idL idR

.. 1  2Result =

idResult

..

.. 2 4 5 7 1 2 3 6 ..x =

.. 1  2  2  3  4  5  6 7Result = ..



/* Assuming that x[lower_bound..mid] and x[mid+1..upper_bound] are sorted, */
/* this procedure merges the two into x[lower_bound..upper_bound] */
void merge(int x[ ], int lower_bound, int mid, int upper_bound)
{ int idLeft, idRight, idResult, result[10]; int i;

idLeft = lower_bound;
idRight = mid+1;

// Continuously remove the smallest one from either partitions until any
// one partition is finished.
for (idResult = lower_bound; idLeft <= mid && idRight <= upper_bound; idResult++)
{ if (x[idLeft] <= x[idRight])

result[idResult] = x[idLeft++];
else

result[idResult] = x[idRight++];}
//Copy remaining elements in any unfinished partition to the result list.
while (idLeft <= mid)

result[idResult++] = x[idLeft++];
while (idRight <= upper_bound)

result[idResult++] = x[idRight++];
//Copy the result list back to x
for (i=lower_bound; i<=upper_bound; i++)

x[i] = result[i];}

Analysis of Merge Sort

Let T(n) be the MERGE-SORT running 
time to sort n numbers.
MERGE-SORT involves:
2 recursive calls to itself (ie. 2 * T(n/2)), 
plus a call to MERGE (ie. c*n, where c 
is a constant).

void merge(..)
To merge n numbers from 2 sorted 
arrays, the running time is roughly 
proportional to n.

Then, what is the 
complexity of Merge Sort?

To sort x[0..n-1] using Merge Sort, 
we call MERGE-SORT(x,0,n-1)

void merge-sort(int x[ ], int low_bound, int up_bound)
{ int mid;

if (low_bound != up_bound)
{ mid = (low_bound + up_bound) / 2;

merge-sort(x, low_bound, mid);
merge-sort(x, mid+1, up_bound);
merge(x, low_bound, mid, up_bound);}}

k (a constant) if n=1

2T(n/2)+ c*n if n>1
T(n) =

The Running time:



T(n)

Expanding the recursion tree:

cn

T(n/2) T(n/2)

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

k (a constant) if n=1
2T(n/2)+cn if n>1T(n) =

Analysis of Merge Sort

Fully Expanded recursion 
tree: cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

k*1 k*1 k*1 k*1 k*1 k*1 k*1 k*1

cn

cn

cn

kn

n

Log2n
(or lg n)

Total: cn lg n + kn
ie. T(n) = O(_____)

Analysis of Merge Sort


