Bonus Topic:

Priority Queue

The Priority Queue

- We call it a priority queue - but its not FIFO
- Items in queue have PRIORITY
- Elements are removed from priority queue in either increasing or decreasing priority
- Min Priority Queue
- Max Priority Queue

The Priority Queue

Next user chosen will be

- Consider situation where we have a computer whose services we are selling
- Users need different amounts of time
- Maximise earnings by min priority queue of users
- i.e. when machine becomes free, the user who needs least time gets the machine; the average delay is minimised

The Priority Queue

Next user chosen will be

- Consider situation where users are willing to pay more to secure access - they are in effect bidding against each other
- Maximise earnings by max priority queue of users
- i.e. when machine becomes free, the user who is willing to pay most gets the machine

The Priority Queue

- Common data structure in computer science
- Responsible for scheduling jobs
- Unix (linux) can allocate processes a priority
- Time allocated to process is based on priority of job
- Priority of jobs in print scheduler

Priority Queue

Priority Queue

- The elements in a stack or a FIFO queue are ordered based on the sequence in which they have been inserted.
- In a priority queue, the sequence in which elements are removed is based on the priority of the elements.

Ordered Priority Queue

The first element to be removed.
Unordered Priority Queue

$\begin{gathered} \mathrm{B} \\ \text { Priority=2 } \end{gathered}$	$\underset{\text { Priority=3 }}{\mathrm{C}}$	A Priority=1	$\begin{gathered} \mathrm{D} \\ \text { Priority=3 } \end{gathered}$

Priority Queue

Priority Queue - Array Implementation

- To implement a priority queue using an array such that the elements are ordered based on the priority.

Time complexity of the operations:
(assume the sorting order is from highest priority to lowest)
Insertion: Find the location of insertion. $\mathrm{O}\left(_\right)$
Shift the elements after the location $\mathrm{O}(\ldots)$
where $\mathrm{n}=$ number of elements in the queue
Insert the element to the found location O The efficiency of Altogether: $\mathrm{O}\left(_\right)$ insertion is important

Deletion: The highest priority element is at the front, ie. Remove the front element (Shift the remaining) takes $\mathrm{O}(\ldots)$ time

Priority Queue

Priority Queue - Array Implementation

- To implement a priority queue using an array such that elements are unordered.

Time complexity of the operations :
Insertion: Insert the element at the rear position. $O(1)$
Deletion: Find the highest priority element to be removed. $O(n)$ Copy the value of the element to return it later. $O(1)$ Shift the following elements so as to fill the hole. $O(n)$ or replace the hole with the rear element $O(1)$ Altogether: $O(n)$

- Consider that, on the average,

The efficiency of deletion is important

Ordered Priority Queue: since it is sorted, every insertion needs to search half the array for the insertion position, and half elements are to be shifted. Unordered Priority Queue: every deletion needs to search all n elements to find the highest priority element to delete.

Priority Queue

Priority Queue - List Implementation

- To implement a priority queue as an ordered list.

Time complexity of the operations:
(assume the sorting order is from highest priority to lowest)
Insertion: Find the location of insertion. $O(n)$
No need to shift elements after the location.
Link the element at the found location. $O(1)$
Altogether: $O(n)$
Deletion: The highest priority element is at the front. ie. Remove the front element takes $O(1)$ time

The efficiency of insertion is important.

More efficient than array implementation.

Priority Queue

Priority Queue - List Implementation

- To implement a priority queue as an Unordered list.

Time complexity of the operations :
Insertion: Simply insert the item at the rear. O (1)
Deletion: Traverse the entire list to find the maximum priority element. $O(n)$.

Copy the value of the element to return it later. O (1) No need to shift any element.
Delete the node. O(1)
Altogether: $O(n)$

The efficiency of
deletion is important

- Ordered list vs Unordered list
<Comparison is similar to array implementations.>

Implementation Options

- Priority queue can be regarded as a heap
- isEmpty, size, and get $=>\mathrm{O}(1)$ time
(put and remove i.e. this is better
- put and remove $=>\mathrm{O}(\log n)$ time than linear list where n is the size of the priority queue option on average
- HEAP
- A complete binary tree with values at its nodes arranged in a particular way (the priority!)

Shortest Paths Problem

Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Path Problem

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

Definition of Shortest Path

- Generalize distance to weighted setting
- Digraph $G=(V, E)$ with weight function $W: E \rightarrow$ R (assigning real values to edges)
- Weight of path $p=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$ is

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

- Shortest path = a path of the minimum weight
- Applications
- static/dynamic network routing
- robot motion planning
- map/route generation in traffic

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Types of Shortest Path Problems

- Shortest-Path problems
- Single-source (single-destination). Find a shortest path from a given source to each of the vertices
- Single-pair. Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
- All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.
- Unweighted shortest-paths - BFS.

Single-Source Shortest Paths

- The single-source shortest paths problem is to find the shortest paths from a vertex $v \in V$ to all other vertices in V of a weighted graph.
- Today, we will discuss the Dijkstra's serial algorithm, which is very similar to Prim's algorithm.
- This approach maintains a set of known shortest paths and adds to this set greedily to include other vertices in the graph.

Dijkstra's Shortest Path Algorithm

Single-Source Shortest Paths

- We wish to find the shortest route between Binghamton and NYC. Given a NYS road map with all the possible routes how can we determine our shortest route?
- We could try to enumerate all possible routes. It is certainly easy to see we do not need to consider a route that goes through Buffalo.

Modeling the "SSSP" Problem

- We can model this problem with a directed graph. Intersections correspond to vertices, roads between intersections correspond to edges and distance corresponds to weights. One way roads correspond to the direction of the edge.
- The problem:
- Given a weighted digraph and a vertex s in the graph: find a shortest path from s to t

The distance of a shortest path

Case 1: The graph may have negative edges but no negative cycles. The shortest distance from s to t can be computed.

Case 2: The graph contains negative weight cycles, and a path from s to t includes an edge on a negative weight cycle. The shortest path distance is $-\infty$.

Dijkstra's Algorithm

- Non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search (if all weights = 1, one can simply use BFS)
- Use Q, priority queue keyed by $d[v]$ (BFS used FIFO queue, here we use a PQ, which is reordered whenever d decreases)
- Basic idea
- maintain a set S of solved vertices
- at each step select "closest" vertex u, add it to S, and relax all edges from u

Dijkstra's Algorithm

- The distance of a vertex \boldsymbol{v} from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances from a given start vertex s to all the other vertices
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex \boldsymbol{v} a label $d(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex \boldsymbol{u} outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
- We update the labels of the vertices adjacent to \boldsymbol{u}

Edge Relaxation

- Consider an edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{z})$ such that
- \boldsymbol{u} is the vertex most recently added to the cloud
$-z$ is not in the cloud

- The relaxation of edge \boldsymbol{e} updates distance $d(z)$ as follows:
$d(z) \leftarrow \min \{d(z), d(u)+w e i g h t(e)\}$

Example

Example (cont.)

Dijkstra's Pseudo Code

- Graph G, weight function w, root s

Dijkstra($G, w, s)$	
1 for each $v \in V$	
$2 \quad$ do $d[v] \leftarrow \infty$	
$3 d[s] \leftarrow 0$	
$4 S \leftarrow \emptyset \triangleright$ Set of discovered nodes	
$5 Q \leftarrow V$	
6 while $Q \neq \emptyset$	
$7 \quad$ do $u \leftarrow$ Extract- $\operatorname{Min}(Q)$	
$8 \quad S \leftarrow S \cup\{u\}$	
$9 \quad$ for each $v \in \operatorname{Ad} d j[u]$	
10 do if $d[v]>d[u]+w(u, v)$	edges
11 then $d[v]-d[u]+w(u, v)$	edges

$$
d(s, s)=0 \leq \text { Example }
$$

$$
\begin{aligned}
& d\left(s, s_{1}\right)=5 \leq \\
& d\left(s, s_{2}\right)=6 \leq \\
& d\left(s, s_{3}\right)=8 \leq \\
& d\left(s, s_{4}\right)=15
\end{aligned}
$$

Note: The shortest path from s to s_{2} includes s_{1} as an intermediate node but cannot include s_{3} or s_{4}.

Dijkstra's greedy selection rule

- Assume $s_{1}, s_{2} \ldots s_{\mathrm{i}-1}$ have been selected, and their shortest distances have been stored in
- Select node s_{i} and save $\mathrm{d}\left(s, s_{\mathrm{i}}\right)$ if s_{i} has the shortest distance from s on a path that may include only $\mathrm{s}_{1}, \mathrm{~s}_{2} \ldots$ $\mathrm{s}_{\mathrm{i}-1}$ as intermediate nodes. We call such paths special
- To apply this selection rule efficiently, we need to maintain for each unselected node v the distance of the shortest special path from s to $v, D[v]$.

Application Example

Solution $=\{(s, 0)\}$
$\mathrm{D}\left[s_{1}\right]=5$ for path $\left[s, s_{1}\right]$
$\mathrm{D}\left[s_{2}\right]=\infty$ for path $\left[s, s_{2}\right]$
$\mathrm{D}\left[s_{3}\right]=10$ for path $\left[s, s_{3}\right]$
$\mathrm{D}\left[s_{4}\right]=15$ for path $\left[s, s_{4}\right]$.
Solution $=\left\{(s, 0),\left(s_{1}, 5\right)\right\}$
$\mathrm{D}\left[s_{2}\right]=6$ for path $\left[s, s_{1}, s_{2}\right]$
$\mathrm{D}\left[s_{3}\right]=9$ for path $\left[s, s_{1}, s_{3}\right.$]
$D\left[s_{4}\right]=15$ for path [s, s_{4}]
Solution $=\left\{(s, 0),\left(s_{1}, 5\right),\left(s_{2}, 6\right)\right\}$
$\mathrm{D}\left[s_{3}\right]=8$ for path $\left[s, s_{1}, s_{2}, s_{3}\right]$
$D\left[s_{4}\right]=15$ for path [s, s_{4}]

Solution $=\left\{(s, 0),\left(s_{1}, 5\right),\left(s_{2}, 6\right),\left(s_{3}, 8\right),\left(s_{4}, 15\right)\right\}$

Implementing the selection rule

- Node near is selected and added to Solution if D (near) $\leq \mathrm{D}(v)$ for any $v \notin$ Solution.

Solution $=\{(s, 0)\}$
$\mathrm{D}\left[s_{1}\right]=5 \leq \mathrm{D}\left[s_{2}\right]=\infty$
$\mathrm{D}\left[s_{1}\right]=5 \leq \mathrm{D}\left[s_{3}\right]=10$
$\mathrm{D}\left[s_{1}\right]=5 \leq \mathrm{D}\left[s_{4}\right]=15$
Node s_{1} is selected
Solution $=\left\{(s, 0),\left(s_{1}, 5\right)\right\}$

Updating D[]

- After adding near to Solution, $\mathrm{D}[v]$ of all nodes $v \notin$ Solution are updated if there is a shorter special path from s to v that contains node near, i.e., if
($\mathrm{D}[$ near $]+\mathrm{w}($ near, $v)<\mathrm{D}[v]$) then
$\mathrm{D}[\mathrm{v}]=\mathrm{D}[$ near $]+\mathrm{w}($ near, $v)$

Updating D Example

Solution $=\{(s, 0)\}$
$\mathrm{D}\left[s_{1}\right]=5, \mathrm{D}\left[s_{2}\right]=\infty, \mathrm{D}\left[s_{3}\right]=10, \mathrm{D}\left[s_{4}\right]=15$.
Solution $=\left\{(s, 0),\left(s_{1}, 5\right)\right\}$
$\mathrm{D}\left[s_{2}\right]=\mathrm{D}\left[s_{1}\right]+\mathrm{w}\left(s_{1}, s_{2}\right)=5+1=6$,
$\mathrm{D}\left[s_{3}\right]=\mathrm{D}\left[s_{1}\right]+\mathrm{w}\left(s_{1}, s_{3}\right)=5+4=9$,
$\mathrm{D}\left[s_{4}\right]=15$
Solution $=\left\{(s, 0),\left(s_{1}, 5\right),\left(s_{2}, 6\right)\right\}$
$\mathrm{D}\left[s_{3}\right]=\mathrm{D}\left[s_{2}\right]+\mathrm{w}\left(s_{2}, s_{3}\right)=6+2=8$,
$\mathrm{D}\left[s_{4}\right]=15$

Solution $=\left\{(s, 0),\left(s_{1}, 5\right),\left(s_{2}, 6\right),\left(s_{3}, 8\right),\left(s_{4}, 15\right)\right\}$

Dijkstra's Algorithm for
 Finding the Shortest Distance from a Single Source

Dijkstra(G,s)

1. for each $v \in V$
2. do $D[v] \leftarrow \infty$
3. $D[s] \leftarrow 0$
4. $P Q \leftarrow$ make- $P Q(D, V)$
5. while $P Q \neq \varnothing$
6. do near $\leftarrow P Q$.extractMin ()
7. \quad for each $v \in \operatorname{Adj}($ near $)$

8 if $D[v]>D[$ near $]+w($ near,$v)$
9. \quad then $D[v] \leftarrow D[$ near $]+w($ near, $v)$
10. PQ.decreasePriorityValue ($\mathrm{D}[v], v$)
11. return the label $D[u]$ of each vertex u

Time Analysis

Using Heap implementation

1. for each $v \in V$
2. \quad do $D[v] \leftarrow \infty$
3. $D[s] \leftarrow 0$
4. $P Q \leftarrow$ make- $\mathrm{PQ}(\mathrm{D}, V)$
5. while $P Q \neq \varnothing$
6. do near $\leftarrow P Q$.extractMin ()
7. for each $v \in \operatorname{Adj}(n e a r)$

8 if $D[v]>D[$ near $]+w($ near,$v)$
9. \quad then $D[v] \leftarrow$ $D[n e a r]+w(n e a r, v)$
PQ.decreasePriorityValue (D[v], v)
11. return the label $D[u]$ of each vertex u

Assume a node in $P Q$ can be accessed in $O(1)$
** Decrease key for v requires $\mathrm{O}(\lg V)$ provided the node in heap with v 's data can be accessed in $\mathrm{O}(1)$

Lines 1-4 run in $O(V)$
Max Size of $P Q$ is $|\mathrm{V}|$
(5) Loop $=O(V)-$ Only decreases $(6+(5)) O(V) * O(\lg V)$
(7+(5)) Loop $=\mathrm{O}($ (Ldeg $($ near $))=O(E)$
(8+(7+(5))) $\mathrm{O}(1) * \mathrm{O}(E)$ (9) $\mathrm{O}(1)$
(10+(7+(5))) Decrease- Key operation on the heap can be implemented in $O(\lg V) * O(E)$.

So total time for Dijkstra's Algorithm is $O(V \lg V+E \lg V)$
What is $O(E)$?
For Sparse Graph $=O(V \lg V)$
For Dense Graph $=O\left(V^{2} \lg V\right)$

Example

Solution for example

S	D(a)	$D(b)$	$D(c)$	$D(d)$	$D(e)$
a	0()	$\infty()$	$\infty()$	$\infty()$	$\infty()$
b		$4(a, b)$	$4(a, c)$	$\infty()$	$\infty()$
c			$4(a, c)$	$14(b, d)$	$\infty()$
d				$5(c, d)$	$6(c, e)$
e					$6(c, e)$

Dijkstra's Example

Dijkstra's Example (2)

- Observe
- relaxation step (lines 10-11)
- setting $d[v]$ updates Q (needs Decrease-Key)
- similar to Prim's MST algorithm

Extension

- Using the template method pattern, we can extend Dijkstra's algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex z a trace-back label P[z]:
- The parent edge in the shortest path tree
- In the edge relaxation step, we update P[Z]

Algorithm DijkstraShortestPathsTree(G, s)
for all $v \in$ G.vertices()
$\mathrm{P}[\mathrm{v}]=\varnothing$
while \neg Q.isEmpty()
$u \leftarrow$ Q.removeMin()
for each vertex z adjacent to u such that z is in Q
if $\mathrm{D}[z]<\mathrm{D}[u]+$ weight (u, z) then
$\mathrm{D}[z]$ fl $\mathrm{D}[u]+$ weight (u, z)
Change to $\mathrm{D}[\mathrm{z}]$ the key of z in Q
$\mathrm{P}[\mathrm{z}]=\mathrm{edge}(\mathrm{u}, \mathrm{z})$
...

Why Dijkstra's Algorithm Works

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
n Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
n When the previous node, D, on the true shortest path was considered, its distance was correct.
n But the edge (D,F) was relaxed at that time!

n Thus, so long as $d(F) \geq d(D)$, F's distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn't Work for Negative-Weight Edges

- Dijkstra's algorithm is based on the greedy
 method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

C's true distance is 1 , but it is already in the cloud with $d(C)=5$!

All-Pairs Shortest Paths

- Find the shortest distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra's algorithm (if no negative edges), which takes $\mathrm{O}(\mathrm{nm} \log \mathrm{n})$ time.
- Likewise, n calls to Bellman-

Ford would take $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time.

- We can achieve $O\left(\mathrm{n}^{3}\right)$ time using dynamic programming using dynamic programming algorithm).

```
Algorithm AllPair(G) \{assumes vertices \(1, \ldots, \boldsymbol{n}\}\)
for all vertex pairs (i,j)
    if \(i=j\)
        \(D_{0}[i, 1] \leftarrow 0\)
    else if \((i, j)\) is an edge in \(G\)
        \(D_{0}[i, j] \leftarrow\) weight of edge \((i, j)\)
    else
        \(D_{0}[i, j] \leftarrow+\infty\)
for \(k \leftarrow 1\) to \(n\) do
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
        \(D_{k}[i, j] \leftarrow \min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}\)
return \(D_{n}\)
```


All pair shortest Path Problem

- The easiest way!
- Iterate Dijkstra's and Bellman-Ford |V| times!
- Dijkstra:
$-O(V \lg V+E)-O\left(V^{2} \lg V+V E\right)$

$\xrightarrow{\text { On dense graph }}$| $\mathrm{O}\left(\mathrm{V}^{3}\right)$ |
| :--- |
| $\mathrm{O}\left(\mathrm{V}^{4}\right)$ |

- Faster-All-Pairs-Shortest-Paths
- $\mathrm{O}\left(\mathrm{V}^{3} \mathrm{IgV}\right) \quad$-> better than Dijkstra and Bellman-Ford
- Any other faster algorithms?
- Floyd-Warshall Algorithm

Floyd-Warshall Algorithm

- Negative edges is allowed
- Assume that no negative-weight cycle
- Dynamic Programming
- The structure of a shortest path
- A recursive solution
- Computing from bottom-up
- Constructing a shortest path

The structure of a shortest path

- Intermediate vertex
- In simple path $\mathrm{p}=\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{l}}\right\rangle$, any vertex of p other than v_{1} and v_{l}
- Any vertex in the set $\left\{\mathrm{v}_{2}, \ldots, \mathrm{v}_{1-1}\right\}$
- Key Observation
- For any pair of vertices i, j in V
- Let p be a minimum-weight path of all paths from i to j whose intermediate vertices are all from $\{1,2, \ldots, k\}$
- Assume that we have all shortest paths from every ito every j whose intermediate vertices are from $\{1,2, \ldots, \mathrm{k}-1\}$
- Observe relationship between path p and above shortest paths

Key Observation (1)

- A shortest path does not contain the same vertex twice
- Proof: A path containing the same vertex twice contains a cycle. Removing cycle give a shorter path.

Key Observation (2)

- P is determined by the shortest paths whose intermediate from $\{1, \ldots, \mathrm{k}-1\}$
- Case1: If k is not an intermediate vertex of P
- Path P is a shortest path from i to j with intermediates from $\{1, \ldots k-1\}$
- Case2: If k is an intermediate vertex of path P
- Path P can be broke down into $i-{ }^{-p^{1}} \ddagger k-p^{2} \ddagger j$
- P1 is the shortest path from i to k with all intermediate in the set $\{1,2, \ldots, k\}$
- P2 is the shortest path from k to j with $\{1,2, \ldots, k\}$

Key Observation(2) - case2

P : All intermediate vertices in $\{1,2, . ., k\}$

A recursive solution

- Let $\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{k})}$ be the length of the shortest path from i to j such that all intermediate vertices on the path are in set $\{1,2, \ldots, k\}$
- Let $D^{(k)}$ be the $n \times n$ matrix $\left[\mathrm{d}_{\mathrm{ij}}(\mathrm{k})\right]$
- $\mathrm{d}_{\mathrm{ij}}{ }^{(0)}$ is set to be w_{ij} (no intermediate vertex).
- $\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{k})}=\min \left(\mathrm{d}_{\mathrm{ij}}{ }^{(\mathrm{k}-1)}, \mathrm{d}_{\mathrm{ik}}{ }^{(k-1)}+\mathrm{d}_{\mathrm{kj}}{ }^{(k-1)}\right) \quad(\mathrm{k} \geq 1)$
- $D^{(n)}=\left(d_{i j}^{(n)}\right)$ gives the final answer, for all intermediate are in the set $\{1,2, \ldots, n\}$

A recursive solution

- $\mathrm{d}_{\mathrm{ij}}(\mathrm{k})= \begin{cases}\mathrm{w}_{\mathrm{ij}} & (\text { if } \mathrm{k}=0) \\ \min \left(\mathrm{d}_{\mathrm{ij}}(\mathrm{k}-1), \mathrm{d}_{\mathrm{ik}}{ }^{(k-1)}+\mathrm{d}_{\mathrm{kj}}(\mathrm{k}-1)\right) & (\text { if } \mathrm{k} \geq 1)\end{cases}$
- The Matrix $D^{(n)}=\left(d_{i j}^{(n)}\right)$ gives the final answer: $d_{i j}^{(n)}=\delta(i, j)$ for all $i, j \in V$.

Extracting the Shortest Paths

- The predecessor pointers pred[i,j] can be used.
- Initially all pred[i,j] = nil
- Whenever the shortest path from i to j passing through an intermediate vertex k is discovered, we set pred $[i, j]=k$

Extracting the Shortest Paths (2)

- Observation:
- If the shortest path does not pass through any intermediate vertex, then pred[i,j] = nil.
- How to find?
- If pred[i, j$]=$ nil, the shortest path is edge (i, j)
- Otherwise, recursively compute (i,pred[i,j]) and (pred[i,j],j)

Comoutina the weiahts bottom up

The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall (w, n)

for $k=1$ to n do dynamic programming
for $i=1$ to n do for $j=1$ to n do
if $\left(d^{(k-1)}[i, k]+d^{(k-1)}[k, j]<d^{(k-1)}[i, j]\right)$ $\left\{d^{(k)}[i, j]=d^{(k-1)}[i, k]+d^{(k-1)}[k, j] ;\right.$ $\operatorname{pred}[i, j]=k ;\}$ else $d^{(k)}[i, j]=d^{(k-1)}[i, j]$;
 return $d^{(n)}[1 . . n, 1 . . n]$;

Analysis

- Running time is clearly $\Theta(?)$
- $\Theta\left(n^{3}\right)$-> $\Theta\left(|V|^{3}\right)$
- Faster than previous algorithms.
$\mathrm{O}\left(|\mathrm{V}|^{4}\right), \mathrm{O}\left(|\mathrm{V}|^{3}|\mathrm{~g}| \mathrm{V} \mid\right)$
- Problem: Space Complexity $\Theta\left(|\mathrm{V}|^{3}\right)$. It is possible to reduce this down to $\Theta\left(|\mathrm{V}|^{2}\right)$ by keeping only one matrix instead of n.

Modified Version

The Floyd-Warshall Algorithm: Version 2

```
Floyd-Warshall \((w, n)\)
\(\{\) for \(i=1\) to \(n\) do
    for \(j=1\) to \(n\) do
    \(\{d[i, j]=w[i, j]\);
        pred \([i, j]=n i l ;\)
    \}
    for \(k=1\) to \(n\) do dynamic programming
    for \(i=1\) to \(n\) do
        for \(j=1\) to \(n\) do
            if \((d[i, k]+d[k, j]<d[i, j])\)
            \(\{d[i, j]=d[i, k]+d[k, j] ;\)
            \(\operatorname{pred}[i, j]=k ;\}\)
    return \(d[1 . . n, 1 . . n]\);

\section*{Transitive Closure}
- Given directed graph \(G=(V, E)\)
- Compute \(\mathrm{G}^{*}=\left(\mathrm{V}, \mathrm{E}^{*}\right)\)
- \(E^{*}=\{(i, j)\) : there is path from \(i\) to \(j\) in \(G\}\)
- Could assign weight of 1 to each edge, then run FLOYD-WARSHALL
- If \(\mathrm{d}_{\mathrm{ij}}<\mathrm{n}\), then there is a path from i to j .
- Otherwise, \(\mathrm{d}_{\mathrm{ij}}=\infty\) and there is no path.

\section*{Transitive Closure - Solution1}
- Using Floyd-Warhshall Algorithm
- Assign weight of 1 to each edge, then run FLOYDWARSHALL with this weights.
- Finally,
- If \(d_{i j}\left({ }^{(n)}<n\right.\), then there is a path from \(i\) to \(j\).
- Otherwise, \(\mathrm{d}_{\mathrm{ij}}^{(\mathrm{n})}=\infty\) and there is no path.

\section*{Transitive Closure - Solution2}
- Using logical operations \(\vee(\mathrm{OR}), \wedge(\mathrm{AND})\)
- Assign weight of 1 to each edge, then run FLOYD-WARSHALL with this weights.
- Instead of \(D^{(k)}\), we have \(T^{(k)}=\left(t_{i j}{ }^{(k)}\right)\)
\(-\mathrm{t}_{\mathrm{ij}}{ }^{(0)}=0 \quad(\) if \(\mathrm{i} \neq \mathrm{j}\) and \((\mathrm{i}, \mathrm{j}) \notin \mathrm{E})\)
\(1 \quad\) (if \(i=j\) or \((i, j) \in E)\)
\(-t_{i j}{ }^{(k)}=1\) (if there is a path from ito j with all intermediate vertices in \(\{1,2, \ldots, k\}\) )
\(\left(t_{i j}{ }^{(k-1)}\right.\) is 1\()\) or \(\left(t_{i k}{ }^{(k-1)}\right.\) is 1 and \(t_{k j}{ }^{(k-1)}\) is 1\()\) 0 (otherwise)

\section*{Transitive Closure - Solution2}

TRANSITIVE-CLOSURE(E, n)
for \(\mathrm{i}=1\) to n
do for \(\mathrm{j}=1\) to n
\[
\text { do if } i=j \text { or }(i, j) \in E
\]
\[
\begin{aligned}
& \text { then } t_{i j}(0)=1 \\
& \text { else } t_{i j}(0)=0
\end{aligned}
\]
for \(k=1\) to \(n\)
do for \(\mathrm{i}=1\) to n do for \(\mathrm{j}=1\) to n
\[
\text { do } t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)
\]
return \(\mathrm{T}^{(n)}\)```

