
Bonus Topic:
Priority Queue

The Priority Queue

• We call it a priority queue - but its not FIFO
• Items in queue have PRIORITY
• Elements are removed from priority queue in either

increasing or decreasing priority
– Min Priority Queue
– Max Priority Queue

P=2 P=5 P=1 P=25 P=9

The Priority Queue

• Consider situation where we have a computer
whose services we are selling

• Users need different amounts of time
• Maximise earnings by min priority queue of users

– i.e. when machine becomes free, the user who needs
least time gets the machine; the average delay is
minimised

P=2 P=5 P=1 P=25 P=9

Next user chosen will be

The Priority Queue

• Consider situation where users are willing to pay
more to secure access - they are in effect bidding
against each other

• Maximise earnings by max priority queue of users
– i.e. when machine becomes free, the user who is willing to

pay most gets the machine

P=2 P=5 P=1 P=25 P=9

Next user chosen will be

The Priority Queue
• Common data structure in computer

science
• Responsible for scheduling jobs

– Unix (linux) can allocate processes a priority
– Time allocated to process is based on priority

of job
• Priority of jobs in print scheduler

Priority Queue
Priority Queue
• The elements in a stack or a FIFO queue are ordered

based on the sequence in which they have been inserted.
• In a priority queue, the sequence in which elements are

removed is based on the priority of the elements.

A
Priority=1

B
Priority=2

C
Priority=3

D
Priority=3

Ordered Priority Queue

(highest priority) (lowest priority)

B
Priority=2

C
Priority=3

A
Priority=1

D
Priority=3

Unordered Priority Queue

The first element to be removed.

Priority Queue

Priority Queue - Array Implementation
• To implement a priority queue using an array such that the elements are ordered

based on the priority.

Time complexity of the operations :
(assume the sorting order is from highest priority to lowest)

Insertion: Find the location of insertion. O(__)
Shift the elements after the location O(__)

where n = number of elements in the queue
Insert the element to the found location O(__)
Altogether: O(__)

Deletion: The highest priority element is at the front, ie. Remove the front
element (Shift the remaining) takes O(__) time

The efficiency of
insertion is important

Priority Queue
Priority Queue - Array Implementation
• To implement a priority queue using an array such that elements are

unordered.

Time complexity of the operations :

Insertion: Insert the element at the rear position. O(1)

Deletion: Find the highest priority element to be removed. O(n)
Copy the value of the element to return it later. O(1)
Shift the following elements so as to fill the hole. O(n)

or replace the hole with the rear element O(1)
Altogether: O(n) The efficiency of

deletion is important
• Consider that, on the average,

Ordered Priority Queue: since it is sorted, every insertion needs to search
half the array for the insertion position, and half elements are to be shifted.
Unordered Priority Queue: every deletion needs to search all n elements to
find the highest priority element to delete.

Priority Queue
Priority Queue - List Implementation
• To implement a priority queue as an ordered list.

Time complexity of the operations :
(assume the sorting order is from highest priority to lowest)

Insertion: Find the location of insertion. O(n)
No need to shift elements after the location.
Link the element at the found location. O(1)
Altogether: O(n)

Deletion: The highest priority element is at the front.
ie. Remove the front element takes O(1) time

The efficiency of
insertion is important.

More efficient than
array implementation.

Priority Queue
Priority Queue - List Implementation
• To implement a priority queue as an unordered list.

Time complexity of the operations :

Insertion: Simply insert the item at the rear. O(1)

Deletion: Traverse the entire list to find the maximum priority element.
O(n).

Copy the value of the element to return it later. O(1)
No need to shift any element.
Delete the node. O(1)
Altogether: O(n)

The efficiency of
deletion is important

• Ordered list vs Unordered list
<Comparison is similar to array implementations.>

Implementation Options

• Priority queue can be regarded as a heap
– isEmpty, size, and get => O(1) time

– put and remove => O(log n) time
where n is the size of the priority queue

• HEAP
– A complete binary tree with values at its nodes

arranged in a particular way (the priority!)

i.e. this is better
than linear list
option on
average

Shortest Paths Problem

Paris

Brussels

Bern
Munich

Prague

Vienna346

183 566

194
285

504
407

271

943

1146

1542
902

Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Weighted Graphs
• In a weighted graph, each edge has an associated numerical

value, called the weight of the edge
• Edge weights may represent, distances, costs, etc.
• Example:

– In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path Problem
• Given a weighted graph and two vertices u and v, we want to find

a path of minimum total weight between u and v.
– Length of a path is the sum of the weights of its edges.

• Example:
– Shortest path between Providence and Honolulu

• Applications
– Internet packet routing
– Flight reservations
– Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Definition of Shortest Path
• Generalize distance to weighted setting
• Digraph G = (V,E) with weight function W: E →

R (assigning real values to edges)
• Weight of path p = v1 → v2 → … → vk is

• Shortest path = a path of the minimum weight
• Applications

– static/dynamic network routing
– robot motion planning
– map/route generation in traffic

1

1
1

() (,)
k

i i
i

w p w v v
−

+
=

= ∑

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Types of Shortest Path
Problems

• Shortest-Path problems
– Single-source (single-destination). Find a shortest

path from a given source to each of the vertices
– Single-pair. Given two vertices, find a shortest path

between them. Solution to single-source problem
solves this problem efficiently, too.

– All-pairs. Find shortest-paths for every pair of
vertices. Dynamic programming algorithm.

– Unweighted shortest-paths – BFS.

Single-Source Shortest Paths

• The single-source shortest paths problem is to find the
shortest paths from a vertex v ∈ V to all other vertices in
V of a weighted graph.

• Today, we will discuss the Dijkstra's serial algorithm,
which is very similar to Prim's algorithm.

• This approach maintains a set of known shortest paths
and adds to this set greedily to include other vertices in
the graph.

Dijkstra’s Shortest Path Algorithm

Single-Source Shortest Paths

• We wish to find the shortest route between
Binghamton and NYC. Given a NYS road
map with all the possible routes how can we
determine our shortest route?

• We could try to enumerate all possible routes.
It is certainly easy to see we do not need to
consider a route that goes through Buffalo.

Modeling the “SSSP” Problem

• We can model this problem with a directed
graph. Intersections correspond to vertices,
roads between intersections correspond to
edges and distance corresponds to weights.
One way roads correspond to the direction
of the edge.

• The problem:
– Given a weighted digraph and a vertex s in the

graph: find a shortest path from s to t

Case 1: The graph may have negative edges but no negative
cycles. The shortest distance from s to t can be computed.

The distance of a shortest path

A Bs t
-3

1 8

d(s,t)=- ∞

Case 2: The graph contains negative weight cycles,
and a path from s to t includes an edge on a negative
weight cycle. The shortest path distance is -∞.

A Bs t
-3

1 81

d(s,t)=6

Dijkstra's Algorithm
• Non-negative edge weights
• Greedy, similar to Prim's algorithm for MST
• Like breadth-first search (if all weights = 1, one

can simply use BFS)
• Use Q, priority queue keyed by d[v] (BFS used

FIFO queue, here we use a PQ, which is re-
ordered whenever d decreases)

• Basic idea
– maintain a set S of solved vertices
– at each step select "closest" vertex u, add it to S, and

relax all edges from u

Dijkstra’s Algorithm
• The distance of a vertex v

from a vertex s is the
length of a shortest path
between s and v

• Dijkstra’s algorithm
computes the distances
from a given start vertex s
to all the other vertices

• Assumptions:
– the graph is connected
– the edges are undirected
– the edge weights are

nonnegative

• We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

• We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices

• At each step
– We add to the cloud the vertex

u outside the cloud with the
smallest distance label, d(u)

– We update the labels of the
vertices adjacent to u

Edge Relaxation

• Consider an edge e = (u,z)
such that
– u is the vertex most recently

added to the cloud
– z is not in the cloud

• The relaxation of edge e
updates distance d(z) as
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

zs
u

d(z) = 60
d(u) = 50

zs
u

e

e

Example

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Dijkstra’s Pseudo Code

• Graph G, weight function w, root s

relaxing
edges

Example
d(s, s) =0 ≤
d(s, s1)=5 ≤
d(s, s2)=6 ≤
d(s, s3)=8 ≤
d(s, s4)=15

Note: The shortest path
from s to s2 includes s1 as
an intermediate node but
cannot include s3 or s4.

s

s1

5

10
3

1

4

2
s3

s2

s4

15 8

Dijkstra’s greedy selection rule

• Assume s1, s2 … si-1 have been selected, and their
shortest distances have been stored in Solution

• Select node si and save d(s, si) if si has the shortest
distance from s on a path that may include only s1, s2 …
si-1 as intermediate nodes. We call such paths special

• To apply this selection rule efficiently, we need to
maintain for each unselected node v the distance of the
shortest special path from s to v, D[v].

Application Example
Solution = {(s, 0)}
D[s1]=5 for path [s, s1]
D[s2]= ∞ for path [s, s2]
D[s3]=10 for path [s, s3]
D[s4]=15 for path [s, s4].

Solution = {(s, 0), (s1, 5) }
D[s2]= 6 for path [s, s1, s2]
D[s3]=9 for path [s, s1, s3]
D[s4]=15 for path [s, s4]

Solution = {(s, 0), (s1, 5), (s2, 6) }
D[s3]=8 for path [s, s1, s2, s3]
D[s4]=15 for path [s, s4]

Solution = {(s, 0), (s1, 5), (s2, 6),(s3, 8), (s4, 15) }

s

s1

5

10
3

1

4

2
s3

s2

s4

15 8

Implementing the selection rule

• Node near is selected and added to Solution
if D(near) ≤ D(v) for any v ∉ Solution.

Solution = {(s, 0)}
D[s1]=5 ≤ D[s2]= ∞
D[s1]=5 ≤ D[s3]=10
D[s1]=5 ≤ D[s4]=15
Node s1 is selected
Solution = {(s, 0), (s1, 5) } s

s1

5

10
3

1

4

2

s3

s2

s4

15 8

Updating D[]
• After adding near to Solution, D[v] of all nodes

v ∉ Solution are updated if there is a shorter special
path from s to v that contains node near, i.e., if

(D[near] + w(near, v) < D[v]) then
D[v]=D[near] + w(near, v)

Solution
after adding
near

D[near] = 5

s
3

3
2

2

6
D[v] = 9

is updated to
D[v]=5+2=7

Updating D Example
Solution = {(s, 0)}
D[s1]=5, D[s2]= ∞ , D[s3]=10, D[s4]=15.

Solution = {(s, 0), (s1, 5) }
D[s2]= D[s1]+w(s1, s2)=5+1=6,
D[s3]= D[s1]+w(s1, s3)=5+4=9,
D[s4]=15

Solution = {(s, 0), (s1, 5), (s2, 6) }
D[s3]=D[s2]+w(s2, s3)=6+2=8,
D[s4]=15

Solution = {(s, 0), (s1, 5), (s2, 6), (s3, 8), (s4, 15) }

s

s1

5

10
3

1

4

2
s3

s2

s4

15 8

Dijkstra’s Algorithm for
Finding the Shortest Distance from a Single Source

Dijkstra(G,s)
1. for each v ∈ V
2. do D [v] ← ∞
3. D [s] ← 0
4. PQ ←make-PQ(D,V)
5. while PQ ≠ ∅
6. do near ← PQ.extractMin ()
7. for each v ∈ Adj(near)
8 if D [v] > D [near] + w(near ,v)
9. then D [v] ← D [near] + w(near, v)
10. PQ.decreasePriorityValue (D[v], v)
11. return the label D[u] of each vertex u

Using Heap implementation

Lines 1 -4 run in O (V)

Max Size of PQ is | V |

(5) Loop = O (V) - Only decreases
(6+(5)) O (V) ∗ O(lg V)

(7+(5)) Loop = O(Σdeg(near)) = O(E)
(8+(7+(5))) O(1)∗O(E)

(9) O(1)
(10+(7+(5))) Decrease- Key operation

on the heap can be implemented
in O(lg V) ∗ O(E).

So total time for Dijkstra's Algorithm is
O (V lg V + E lg V)

What is O(E) ?
For Sparse Graph = O(V lg V)
For Dense Graph = O(V2 lg V)

Time Analysis
1. for each v ∈ V
2. do D [v] ← ∞
3. D [s] ← 0
4. PQ ←make-PQ(D,V)

5. while PQ ≠ ∅
6. do near ← PQ.extractMin ()
7. for each v ∈ Adj(near)
8 if D [v] > D [near] + w(near ,v)
9. then D [v] ←

D[near] + w(near,v)
10. PQ.decreasePriorityValue

(D[v], v)
11. return the label D[u] of each vertex u

Assume a node in PQ can be accessed in O(1)
** Decrease key for v requires O(lgV) provided

the node in heap with v’s data can be
accessed in O(1)

Example

4 4

2

1 2

5
10

c

d

b

a

e

S D(a) D(b) D(c) D(d) D(e)

a 0 () ∞ () ∞ () ∞ () ∞ ()

b 4 (a, b) 4 (a, c) ∞ () ∞ ()

c 4 (a, c) 14(b, d) ∞ ()

d 5 (c, d) 6(c, e)

e 6(c, e)

Solution for example

Dijkstra’s Example

∞ ∞

∞ ∞

0s

u v

yx

10

5

1

2 3 9
4 67

2

10 ∞

5 ∞

0s

u v

yx

10

5

1

2 3 9
4 67

2

u v

8 14

5 7

0s

yx

10

5

1

2 3 9
4 67

2

8 13

5 7

0s

u v

yx

10

5

1

2 3 9
4 67

2

• Observe
– relaxation step (lines 10-11)
– setting d[v] updates Q (needs Decrease-Key)
– similar to Prim's MST algorithm

Dijkstra’s Example (2)

8 9

5 7

0

u v

yx

10

5

1

2 3 9
4 67

2

8 9

5 7

0

u v

yx

10

5

1

2 3 9
4 67

2

Extension
• Using the template

method pattern, we can
extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex to
all other vertices

• We store with each
vertex z a trace-back
label P[z]:
– The parent edge in the

shortest path tree
• In the edge relaxation

step, we update P[Z]

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
P[v]= ∅
…

while ¬Q.isEmpty()
u ← Q.removeMin()
for each vertex z adjacent to u such that z

is in Q
if D[z] < D[u]+weight(u,z) then

D[z] ßD[u]+weight(u,z)
Change to D[z] the key of z in Q

P[z]=edge(u,z)
…

Why Dijkstra’s Algorithm
Works

• Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

n Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

n When the previous node, D, on the
true shortest path was considered,
its distance was correct.

n But the edge (D,F) was relaxed at
that time!

n Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

Why It Doesn’t Work for
Negative-Weight Edges

– If a node with a negative
incident edge were to be
added late to the cloud, it
could mess up distances
for vertices already in the
cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

• Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud
with d(C)=5!

All-Pairs Shortest Paths
• Find the shortest distance

between every pair of
vertices in a weighted
directed graph G.

• We can make n calls to
Dijkstra’s algorithm (if no
negative edges), which takes
O(nmlog n) time.

• Likewise, n calls to Bellman-
Ford would take O(n2m) time.

• We can achieve O(n3) time
using dynamic programming
(similar to the Floyd-Warshall
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j)

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

• The easiest way!
– Iterate Dijkstra’s and Bellman-Ford |V| times!

• Dijkstra:
– O(VlgV + E) -> O(V2lgV + VE)

• Bellman-Ford:
– O(VE) -> O(V2E)

• Faster-All-Pairs-Shortest-Paths
– O(V3lgV) -> better than Dijkstra and Bellman-Ford

• Any other faster algorithms?
– Floyd-Warshall Algorithm

All pair shortest Path Problem

O(V3)

O(V4)

On dense graph

Floyd-Warshall Algorithm

• Negative edges is allowed
• Assume that no negative-weight cycle
• Dynamic Programming

– The structure of a shortest path
– A recursive solution
– Computing from bottom-up
– Constructing a shortest path

The structure of a shortest path

• Intermediate vertex
– In simple path p = <v1,…,vl>, any vertex of p other than v1

and vl
– Any vertex in the set {v2,…,vl-1}

• Key Observation
– For any pair of vertices i, j in V
– Let p be a minimum-weight path of all paths from i to j

whose intermediate vertices are all from {1,2,…,k}
– Assume that we have all shortest paths from every i to

every j whose intermediate vertices are from {1,2,…,k-1}
– Observe relationship between path p and above shortest

paths

Key Observation (1)

• A shortest path does not contain the same vertex
twice

– Proof: A path containing the same vertex twice contains a
cycle. Removing cycle give a shorter path.

Key Observation (2)

• P is determined by the shortest paths whose
intermediate from {1,…,k-1}

• Case1: If k is not an intermediate vertex of P
– Path P is a shortest path from i to j with intermediates

from {1,…k-1}
• Case2: If k is an intermediate vertex of path P

– Path P can be broke down into i -- p1à k - p2à j
– P1 is the shortest path from i to k with all intermediate in

the set {1,2,…,k}
– P2 is the shortest path from k to j with {1,2,…,k}

Key Observation(2) – case2

i

k

j

p1 p2

P1:All intermediate vertices in {1,2,..,k-1} P2:All intermediate vertices in {1,2,..,k-1}

P: All intermediate vertices in {1,2,..,k}

A recursive solution

• Let dij
(k) be the length of the shortest path from i to j

such that all intermediate vertices on the path are in
set {1,2,…,k}

• Let D(k) be the n Χ n matrix [dij
(k)]

• dij
(0) is set to be wij (no intermediate vertex).

• dij
(k) = min(dij

(k-1) , dik
(k-1) + dkj

(k-1)) (k≥1)
• D(n) = (dij

(n)) gives the final answer, for all
intermediate are in the set {1,2,…,n}

A recursive solution

• dij(k) = wij (if k=0)
min(dij

(k-1), dik
(k-1) + dkj

(k-1)) (if k≥1)

• The Matrix D(n) = (dij
(n)) gives the final answer:

dij
(n) = δ(i,j) for all i,j V.

Extracting the Shortest Paths

• The predecessor pointers pred[i,j] can be used.

• Initially all pred[i,j] = nil

• Whenever the shortest path from i to j passing
through an intermediate vertex k is discovered, we
set pred[i,j] = k

Extracting the Shortest Paths (2)

• Observation:
– If the shortest path does not pass through any

intermediate vertex, then pred[i,j] = nil.
• How to find?

– If pred[i,j] = nil, the shortest path is edge (i,j)
– Otherwise, recursively compute

(i,pred[i,j]) and (pred[i,j],j)

Computing the weights bottom up

case2

case1

Analysis

• Running time is clearly Θ(?)
• Θ(n3) -> Θ(|V|3)
• Faster than previous algorithms.

O(|V|4),O(|V|3lg|V|)
• Problem: Space Complexity Θ(|V|3). It is possible to

reduce this down to Θ(|V|2)by keeping only one
matrix instead of n.

Modified Version

WHY??

Transitive Closure

• Given directed graph G = (V, E)
• Compute G* = (V, E*)
• E* = {(i,j) : there is path from i to j in G}
• Could assign weight of 1 to each edge, then run

FLOYD-WARSHALL
• If dij < n, then there is a path from i to j.
• Otherwise, dij = ∞ and there is no path.

Transitive Closure – Solution1

• Using Floyd-Warhshall Algorithm
• Assign weight of 1 to each edge, then run FLOYD-

WARSHALL with this weights.
• Finally,

– If dij
(n) < n, then there is a path from i to j.

– Otherwise, dij
(n) = ∞ and there is no path.

Transitive Closure – Solution2

• Using logical operations ∨ (OR), ∧ (AND)
• Assign weight of 1 to each edge, then run

FLOYD-WARSHALL with this weights.
• Instead of D(k), we have T(k) = (tij(k))

– tij(0) = 0 (if i ≠ j and (i, j) ∉ E)
1 (if i = j or (i, j) ∈ E)

– tij(k) = 1 (if there is a path from i to j with all intermediate
vertices in {1, 2,…, k})

(tij(k-1) is 1) or (tik(k-1) is 1 and tkj
(k-1) is 1)

0 (otherwise)

Transitive Closure – Solution2

TRANSITIVE-CLOSURE(E, n)
for i = 1 to n

do for j = 1 to n
do if i=j or (i, j) ∈ E

then tij(0) = 1
else tij(0) = 0

for k = 1 to n
do for i = 1 to n

do for j = 1 to n
do tij(k) = tij(k-1) ∨ (tik(k-1) ∧ tkj

(k-1))
return T(n)

