
Minimum Spanning Tree

Spanning Tree
• Given a connected weighted undirected 

graph G, a spanning tree of G is a 
subgraph of G that contains all of G’s 
nodes and enough of its edges to form a 
tree.

v1

v4

v3

v5

v2

Spanning 
tree Spanning tree is not unique!



What is A Spanning Tree?
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• A spanning tree for an 
undirected graph G=(V,E) 
is a subgraph of G that is a 
tree and contains all the 
vertices of G 

• Can a graph have more 
than one spanning tree?

Yes
• Can an unconnected graph 

have a spanning tree?
No

DFS spanning tree
• Generate the spanning tree edge during the 

DFS traversal.

Algorithm dfsSpanningTree(v)
mark v as visited;
for (each unvisited node u adjacent to v) {

mark the edge from u to v;
dfsSpanningTree(u);

}

• Similar to DFS, the spanning tree edges can be 
generated based on BFS traversal.



Example of generating spanning 
tree based on DFS
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stack
v3 v3

v2 v3, v2

v1 v3, v2, v1

backtrack v3, v2

v4 v3, v2, v4

v5 v3, v2, v4 , v5

backtrack v3, v2, v4 

backtrack v3, v2

backtrack v3

backtrack empty

xxx
x x

Spanning Tree
Use BFS and DFS
1. Find a spanning subgraph of G and draw it below.
2. Draw all the different spanning trees of G



Minimal Spanning Tree.
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ΣMst T: w( T )= (u,v) ∈ T w(u,v ) is minimized

• The weight of a subgraph is 
the sum of the weights of it 
edges.

• A minimum spanning tree
for a weighted graph is a 
spanning tree with minimum 
weight.

• Can a graph have more 
then one minimum 
spanning tree?

Yes, maybe

Minimum Spanning Tree
• Consider a connected undirected graph where

– Each node x represents a country x
– Each edge (x, y) has a number which measures the 

cost of placing telephone line between country x and 
country y

• Problem: connecting all countries while 
minimizing the total cost

• Solution: find a spanning tree with minimum total 
weight, that is, minimum spanning tree



Formal definition of minimum 
spanning tree

• Given a connected undirected graph G.
• Let T be a spanning tree of G.
• cost(T) = ∑e∈Tweight(e)
• The minimum spanning tree is a spanning tree T 

which minimizes cost(T)
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Greedy Choice
We will show two ways to build a minimum 

spanning tree.
• A MST can be grown from the current spanning 

tree by adding the nearest vertex and the edge 
connecting the nearest vertex to the MST. 
(Prim's algorithm)

• A MST can be grown from a forest of spanning 
trees by adding the smallest edge connecting 
two spanning trees. (Kruskal's algorithm)



Notation

• Tree-vertices: in the tree constructed so far
• Non-tree vertices: rest of vertices

Prim’s Selection rule
• Select the minimum weight edge between a tree-

node and a non-tree node and add to the tree

The Prim’s algorithm Main Idea
This algorithm starts with one node. It then, one by one, adds a node that 

is unconnected to the new tree to the new tree, each time selecting the 
node whose connecting edge has the smallest weight out of the 
available nodes’ connecting edges.

The steps are:

1. The new tree is constructed - with one node from the old graph.
2. While new tree has fewer than n nodes,

1. Find the node from the old graph with the smallest connecting edge 
to the new tree,

2. Add it to the new tree

Every step will have joined one node, so that at the end we will have one 
tree with all the nodes and it will be a minimum spanning tree of the original 
graph.



The Prim’s algorithm Main Idea
Select a vertex to be a tree-node

while (there are non-tree vertices) {
if there is no edge connecting a tree 
node with a non-tree node

return “no spanning tree”

select an edge of minimum weight 
between a tree node and a non-tree 
node

add the selected edge and its new 
vertex to the tree
}

return tree
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Prim’s algorithm
Algorithm PrimAlgorithm(v)
• Mark node v as visited and include it in the 

minimum spanning tree;
• while (there are unvisited nodes) {

– find the minimum edge (v, u) between a visited node 
v and an unvisited node u;

– mark u as visited;
– add both v and (v, u) to the minimum spanning tree;

}



Some Examples

Example #01

Start from v5, find the 
minimum edge attach to v5
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Description Not 
seen Fringe Solution 

set

This is our original weighted graph. This is 
not a tree because the definition of a tree 
requires that there are no cycles and this 
diagram contains cycles. A more correct 
name for this diagram would be a graph or 
a network. The numbers near the arcs 
indicate their weight. None of the arcs are 
highlighted, and vertex D has been 
arbitrarily chosen as a starting point.

C, G A, B, E, 
F D

Example #02 - 1

Description Not 
seen Fringe Solution 

set

The second chosen vertex is the vertex 
nearest to D: A is 5 away, B is 9, E is 15, and 
F is 6. Of these, 5 is the smallest, so we 
highlight the vertex A and the arc DA. 

C, G B, E, F A, D

Example #02 - 2



Description Not 
seen Fringe Solution 

set

The next vertex chosen is the vertex nearest to 
either D or A. B is 9 away from D and 7 away 
from A, E is 15, and F is 6. 6 is the smallest, 
so we highlight the vertex F and the arc DF. 

C B, E, G A, D, F

Example #02 - 3

Description Not 
seen Fringe Solution 

set

The algorithm carries on as above. Vertex B, 
which is 7 away from A, is highlighted. Here, 
the arc DB is highlighted in red, because both 
vertex B and vertex D have been highlighted, 
so it cannot be used. 

null C, E, G A, D, F, B

Example #02 - 4



Description Not 
seen Fringe Solution 

set

In this case, we can choose between C, E, and 
G. C is 8 away from B, E is 7 away from B, 
and G is 11 away from F. E is nearest, so we 
highlight the vertex E and the arc EB. Two 
other arcs have been highlighted in red, as 
both their joining vertices have been used. 

null C, G A, D, F, B, 
E

Example #02 - 5

Description Not 
seen Fringe Solution 

set

Here, the only vertices available are C and G. 
C is 5 away from E, and G is 9 away from E. C
is chosen, so it is highlighted along with the arc 
EC. The arc BC is also highlighted in red. 

null G A, D, F, B, 
E, C

Example #02 - 6



Description Not 
seen Fringe Solution 

set

Vertex G is the only remaining vertex. It is 11 
away from F, and 9 away from E. E is nearer, 
so we highlight it and the arc EG. Now all the 
vertices have been highlighted, the minimum 
spanning tree is shown in green. In this case, it 
has weight 39. 

null null A, D, F, B, 
E, C, G

Example #02 - 7

Example #03
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Implementation Issues
• How is the graph implemented?

– Assume that we just added node u to the tree.
– The distance of the nodes adjacent to u to the tree may 

now be decreased.
– There must be fast access to all the adjacent vertices.
– So using adjacency lists seems better 

• How should the set of non-tree vertices be 
represented?
– The operations are:

• build set
• delete node closest to tree
• decrease the distance of a non-tree node from the tree
• check whether a node is a non- tree node

Implementation Issues
• How should the set of non-tree vertices be 

represented?
– A priority queue PQ  may be used with the priority D[v] 

equal to the minimum distance of each non-tree vertex v to 
the tree.

– Each item in PQ contains: D[v], the vertex v, and the 
shortest distance edge (v, u) where u is a tree node

• This means:
– build a PQ of non-tree nodes with initial values -

• fast build heap O (V )

• building an unsorted list O(V)
• building a sorted list O(V) (special case)



Implementation Issues
– delete node closest to tree (extractMin)

• O(lg V ) if heap and 
• O(V) if unsorted list 
• O(1) sorted list

– decrease the distance of a non-tree node to the tree
– We need to find the location i of  node v in the priority queue 

and then execute (decreasePriorityValue(i, p)) where p is 
the new priority 

– decreasePriorityValue(i, p)
• O(lg V)  for heap,
• O(1)  for unsorted list 
• O(V ) for sorted list (too slow)

Implementation Issues
• What is the location i of  node v in a priority queue?

– Find in Heaps, and sorted lists O(n)
– Unsorted – if the nodes are numbered 1 to n and we use an 

array where node v is the v item in the array O(1)

Extended heap
– We will use extended heaps that contain a “handle” to the 

location of each node in the heap.
– When a node is not in PQ the “handle” will indicate that this 

is the case
– This means that we can access a node in the extended 

heap in O(1), and check v  ∈ PQ in O(1)
– Note that the “handle” must be updated whenever a heap 

operation is applied 



Implementation Issues
2. Unsorted list

– Array implementation where node v can be 
accesses as PQ[v] in O(1), and the value of PQ[v] 
indicates when the node is not in PQ.

Lines 1-5 initialize the priority queue PQ
to contain all Vertices. Ds for all 
vertices except r, are set to infinity.
r is the starting vertex of the T
The T so far is empty

Add closest vertex and edge to current 
T

Get all adjacent vertices v of u,
update D of each non-tree vertex 
adjacent to u

Store the current minimum weight edge, 
and updated distance in the priority 
queue

Prim’s Algorithm

1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-heap(D,V, {})//No edges
5. T ← ∅
6.
7. while PQ ≠ ∅ do
8. (u,e ) ← PQ.extractMin() 
9.       add (u,e) to T
10. for each v ∈ Adjacent (u )

// execute relaxation
11. do if v ∈PQ && w( u, v ) < D [ v ]
12. then D [ v ] ← w (u, v) 
13.               PQ.decreasePriorityValue

( D[v], v, (u,v )) 
14. return T  // T is a mst.



Prim’s Algorithm
Initialization

Prim (G )
1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-heap(D,V, {})//No edges
5. T ← ∅

Building the MST
//  solution check 

7. while PQ ≠ ∅ do
//Selection and feasibility 
8. (u,e ) ← PQ.extractMin() 

// T contains the solution so far . 
9.       add (u,e) to T
10. for each v ∈ Adjacent (u )
11. do if v ∈ PQ && w( u, v ) < D [ v ]
12. then D [ v ] ← w (u, v) 
13.                      PQ.decreasePriorityValue

(D[v], v, (u,v) ) 
14. return T



Using Extended Heap 
implementation

Lines 1 -6 run in O (V )

Max Size of PQ is | V |

Count7 =O (V )
Count7(8) = O (V ) ∗ O( lg V )

Count7(10) = O(Σdeg(u ) ) = O( E )
Count7(10(11)) = O(1)∗O( E )
Count7(10(11(12))) = O(1) ∗O( E )
Count7(10(13)) = O( lg V) ∗ O( E ) Decrease-

Key operation on the extended heap can 
be implemented

in O( lg V)
So total time for Prim's Algorithm is 

O ( V lg V + E lg V )
What is O(E ) ?
Sparse Graph, E =O(V) , O (E lg V)=O(V lg V ) 
Dense Graph, E=O(V2), O (E lg V)=O(V2 lg V)

Time Analysis
1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-PQ(D,V, {})//No edges
5. T ← ∅
6.
7. while PQ ≠ ∅ do
8. (u,e ) ← PQ.extractMin() 
9.       add (u,e) to T
10. for each v ∈ Adjacent (u )
11. do if v ∈PQ && w( u, v ) < D [ v ]
12. then D [ v ] ← w (u, v) 
13.               PQ.decreasePriorityValue

(D[v], v, (u,v)) 
15. return T  // T is a mst.
Assume a node in PQ can be accessed in 
O(1)

** Decrease key for v requires O(lgV ) 
provided the node in heap with v’s data 
can be accessed in O(1)

Using unsorted PQ

Lines 1 - 6 run in O (V )

Max Size of PQ is | V |
Count7 = O (V ) 
Count7(8) = O (V ) ∗ O(V )

Count7(10) = O(Σdeg(u ) ) = O( E )
Count7(10(11)) = O(1)∗O( E )
Count7(10(11(12))) = O(1) ∗O( E )
Count7(10(13)) =O( 1) ∗ O( E )

So total time for Prim's Algorithm is 
O (V + V2 + E ) = O (V2 ) 

For Sparse/Dense graph : O( V2 )
Note growth rate unchanged for adjacency 

matrix graph representation

Time Analysis
1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-PQ(D,V, {})//No edges
5. T ← ∅
6.
7. while PQ ≠ ∅ do
8. (u,e ) ← PQ.extractMin() 
9.       add (u,e) to T
10. for each v ∈ Adjacent (u )
11. do if v ∈PQ && w( u, v ) < D [ v ]
12. then D [ v ] ← w (u, v) 
13.               PQ.decreasePriorityValue

(D[v], v, (u,v)) 
15. return T  // T is a mst.



handle
A
B
C

1
2
3

Prim - extended Heap
After Initialization

T PQ

0, (A, {})

∞, (B, {}) ∞, (C, {})

1

2 3

A

B

C

2

5
6

G

Prim (G, r)
1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-heap(D,V, { })
5. T ← ∅

A
B
C

G

A 2

A 6

B 2 C 6 

C 5

B 5

Prim - extended Heap 
Build tree - after PQ.extractMin

handle

A
B
C

Null
2
1

T
(A, {})

PQ

∞, (C, {})

∞, (B, {})

1

2

A

C

2

5
6

G

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9.       add (u,e) to T

B



Update B adjacent to A
handle

A
B
C

Null
1
2

T
(A, {})

PQ

2, (B, {A, B})

∞, (C, {})

1

2

A

C

2

5
6

G

10. for each v ∈ Adjacent (u )
11. // relaxation operation

// relaxation
11. do if v ∈PQ && w( u, v ) < D [ v ]
12. then D [ v ] ← w (u, v) 
13.                 PQ.decreasePriorityValue

( D[v], v, (u,v)) 

B

Update C adjacent to A
handle

A
B
C

Null
1
2

T
(A, {})

PQ

2, (B, {A, B})

6, (C, {A, C})

1

2A

B

C

2

5
6

G



Build tree - after PQ.extractMin
handle

A
B
C

Null
Null
1

T
(A, {})
(B, {A, B})

PQ

6, (C, {A, C})1

A

B

C

2

5
6

G

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

Update C adjacent to B
handle

A
B
C

Null
Null
1

T
(A, {})

PQT
(A, {})
(B, {A, B})

5, (C, {B, C})1

10. for each v ∈ Adjacent (u )
11. // relaxation operation

A

B
2

5
6

GC



Build tree - after PQ.extractMin
handle

A
B
C

Null
Null
Null

T
(A, {})

PQT
(A, {})
(B, {A, B}) 
(C, {B, C})

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

A

B
2

5
6

GC

Prim - unsorted list
After Initialization

T PQ
A BA

B

C

12

5
4

G

0, (A, {}) ∞, (B, {}) ∞, (C, {})

C

Prim (G, r)
1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-PQ(D,V, { })
5. T ← ∅

A
B
C

G

A 12

A 4

B 12 C 4 

C 5

B 5



Build tree - after 
PQ.extractMin
T
(A, {})

PQ
B

∞, (B, {}) ∞, (C, {})

C

Null

A

B

C

12

5
4

G

A

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

Update B, C adjacent to A
T
(A, {})

PQ
B

12, (B, {A, B}) 4, (C, {A, C})

C

Null

A

B

C

12

5
4

G

A

10. for each v ∈ Adjacent (u )
11. // relaxation operation



Build tree - after PQ.extractMin
T
(A, {})
(C, {A, C}) PQ

B

Null12, (B, {A, B})

C

Null

A
B

C

12

5
4

G

A

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

Update B adjacent to C
T
(A, {})

PQT
(A, {})
(C, {A, C})

B

Null5, (B, {C, B})

C

Null

A

10. for each v ∈ Adjacent (u )
11. // relaxation operation

B

C

12

5
4

G

A



Build tree - after PQ.extractMin
T
(A, {})

PQT
(A, {})
(C, {A, C}) 
(B, {C, B})

B

Null Null

C

Null

A

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

B

C

12

5
4

G

A

Prim (G)
1. for each u ∈V
2. do D [u ] ← ∞
3. D[ r ] ← 0
4. PQ ←make-heap(D,V, { })
5. T ← ∅

6 4

5

2

9

15

8

10
14

3

e

f

b

a

c

d

g

h

r

PQ = {( 0,(a,∗)), (∞,(b,?)), ...(∞,(h,?))}

T = { } 
G =

D = [ 0, ∞,    …, ∞ ]
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PQ = {

T = {

7. while PQ ≠ ∅ do 
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T
10. for each v ∈ Adjacent (u )
11. // relaxation operation
15. return T

G =

// relaxation
11. do if v ∈PQ && w( u, v ) < D [ v ]
12. then D [ v ] ← w (u, v) 
13.                 PQ.decreasePriorityValue

( D[v], v, (u,v)) 

D = [ 0,

Analysis of Prim's Algorithm

Running Time =  O(m + n log n)             (m = edges, n = nodes)
Acer Aspire 4920G-301G16Mi (008) 
If a heap is not used, the run time will be O(n^2) instead of O(m + n log n). 
However, using a heap complicates the code since you’re complicating the 
data structure. A Fibonacci heap is the best kind of heap to use, but again, it 
complicates the code.

Unlike Kruskal’s, it doesn’t need to see all of the graph at once.  It can deal 
with it one piece at a time.  It also doesn’t need to worry if adding an edge will 
create a cycle since this algorithm deals primarily with the nodes, and not the 
edges.

For this algorithm the number of nodes needs to be kept to a minimum in 
addition to the number of edges. For small graphs, the edges matter more, 
while for large graphs the number of nodes matters more.



Kruskal's Algorithm: Main Idea

This algorithm creates a forest of trees. Initially the 
forest consists of n single node trees (and no 
edges). At each step, we add one edge (the 
cheapest one) so that it joins two trees together. 
If it were to form a cycle, it would simply link two 
nodes that were already part of a single 
connected tree, so that this edge would not be 
needed.

Kruskal's Algorithm: Main Idea
The steps are:

1. The forest is constructed - with each node in a 
separate tree.

2. The edges are placed in a priority queue.
3. Until we've added n-1 edges,

1. Extract the cheapest edge from the queue,
2. If it forms a cycle, reject it,
3. Else add it to the forest. Adding it to the forest will 

join two trees together.

Every step will have joined two trees in the forest together, 
so that at the end, there will only be one tree in T.



Kruskal's algorithm
• Step 1: Find the cheapest edge in the graph (if there is 

more than one, pick one at random). Mark it with any 
given colour, say red.

• Step 2: Find the cheapest unmarked (uncoloured) edge 
in the graph that doesn't close a coloured or red circuit. 
Mark this edge red.

• Step 3: Repeat Step 2 until you reach out to every vertex 
of the graph (or you have N ; 1 coloured edges, where N 
is the number of Vertices.) The red edges form the 
desired minimum spanning tree.

solution = { } 
while ( more edges in E) do
// Selection 

select minimum weight edge
remove edge from E
// Feasibility 

if (edge closes a cycle with solution so far)
then reject edge
else add edge to solution

//  Solution check 
if |solution| = |V | - 1 return solution

return null // when does this happen?

Kruskal's Algorithm: Main Idea
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Some Examples

Example #01

This is our original graph.
The numbers near the
arcs indicate their weight.
None of the arcs are
highlighted.

AD and CE are the
shortest arcs, with
length 5, and AD has
been chosen, so it is
highlighted.



Example #01

However, CE is now the
shortest arc that does not
form a cycle, with length 5,
so it is highlighted as the
second arc.

The next arc, DF with 
length 6, is highlighted 
using much the same 
method. 

Example #01

The next-shortest arcs are
AB and BE, both with length
7. AB is chosen arbitrarily,
and is highlighted. The arc
BD has been highlighted in
red, because it would form a
cycle ABD if it were chosen.

The process continues to highlight the
next-smallest arc, BE with length 7. Many
more arcs are highlighted in red at this
stage: BC because it would form the loop
BCE, DE because it would form the loop
DEBA, and FE because it would form
FEBAD.



Example #01

Finally, the process finishes
with the arc EG of length 9,
and the minimum spanning
tree is found.

Example #02
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C = { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }
C is a forest of trees.

Kruskal's Algorithm:
1. Sort the edges E in non-
decreasing

weight
2. T ← ∅
3. For each v ∈V create a set.
4. repeat 
5. Select next {u,v} ∈ E, in order 
6. ucomp ← find (u) 
7. vcomp ← find (v) 
8. if ucomp ≠ vcomp then
8. add edge (u,v) to T
9. union ( ucomp,vcomp )
10.until T contains |V | - 1 edges
11. return tree T



Kruskal - Disjoint set
After Initialization

TA
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C
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G

1.  Sort the edges E in non-
decreasing

weight
2. T ← ∅

3. For each v ∈V create a set.
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5.  for each {u,v} ∈ in ordered E
6. ucomp ← find (u) 
7. vcomp ← find (v) 
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union( ucomp,vcomp )
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Kruskal - add minimum weight 
edge if feasible
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5.  for each {u,v} ∈ in ordered E
6. ucomp ← find (u) 
7. vcomp ← find (v) 
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union ( ucomp,vcomp )
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Kruskal - add minimum weight 
edge if feasible
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5.  for each {u,v} ∈ in ordered E
6. ucomp ← find (u) 
7. vcomp ← find (v) 
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union ( ucomp,vcomp )
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Analysis of Kruskal's Algorithm

Running Time =  O(m log n)             (m = edges, n = nodes)

Testing if an edge creates a cycle can be slow unless a 
complicated data structure called a “union-find” structure is used.

It usually only has to check a small fraction of the edges, but in 
some cases (like if there was a vertex connected to the graph by 
only one edge and it was the longest edge) it would have to 
check all the edges.

This algorithm works best, of course, if the number of edges is 
kept to a minimum.



Kruskal ( G )
1.  Sort the edges E in non-decreasing

weight
2. T ← ∅
3. For each v ∈V create a set.
4. repeat 
5. {u,v} ∈ E, in order 
6. ucomp ← find (u) 
7. vcomp ← find (v) 
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union ( ucomp,vcomp )
11.until T contains |V | - 1 edges
12. return tree T 

Count1 = Θ( E lg E )

Count2= Θ(1)
Count3= Θ( V )
Count4 = O( E )

Using Disjoint set-height and
path compression 

Count4(6+7+10)= 
O((E +V) α(V))

Sorting dominates the runtime. 
We get  T( E,V ) = Θ( E lg E), 
so for a sparse graph we get 
Θ( V lg V)
for a dense graph we get
Θ( V2 lg V2) = Θ( V2 lg V)

Kruskal's Algorithm: Time 
Analysis

Minimum Spanning Tree
Given the weighted graph below: 

1. Use Kruskal's algorithm to find a 
minimum spanning tree and indicate the 
edges in the graph shown below: Indicate 
on the edges that are selected the order 
of their selection.

2. Use Prim's algorithm to find the 
minimum spanning tree and indicate the 
edges in the graph shown below. Indicate 
on the edges that are selected the order 
of their selection.



Minimum Spanning Tree
• http://www.cse.yorku.ca/~aaw/Ghiassi/MST/MSTAlg.htm

http://www.cse.yorku.ca/~aaw/Ghiassi/MST/MSTAlg.htm

