
Minimum Spanning Tree

Spanning Tree
• Given a connected weighted undirected

graph G, a spanning tree of G is a
subgraph of G that contains all of G’s
nodes and enough of its edges to form a
tree.

v1

v4

v3

v5

v2

Spanning
tree Spanning tree is not unique!

What is A Spanning Tree?

u

v

b

a

c

d

e

f

• A spanning tree for an
undirected graph G=(V,E)
is a subgraph of G that is a
tree and contains all the
vertices of G

• Can a graph have more
than one spanning tree?

Yes
• Can an unconnected graph

have a spanning tree?
No

DFS spanning tree
• Generate the spanning tree edge during the

DFS traversal.

Algorithm dfsSpanningTree(v)
mark v as visited;
for (each unvisited node u adjacent to v) {

mark the edge from u to v;
dfsSpanningTree(u);

}

• Similar to DFS, the spanning tree edges can be
generated based on BFS traversal.

Example of generating spanning
tree based on DFS

v1

v4

v3

v5

v2

G

stack
v3 v3

v2 v3, v2

v1 v3, v2, v1

backtrack v3, v2

v4 v3, v2, v4

v5 v3, v2, v4 , v5

backtrack v3, v2, v4

backtrack v3, v2

backtrack v3

backtrack empty

xxx
x x

Spanning Tree
Use BFS and DFS
1. Find a spanning subgraph of G and draw it below.
2. Draw all the different spanning trees of G

Minimal Spanning Tree.

4 4

3

2

9

15

8

10
14

3

u

v

b

a

c

d

e

f

ΣMst T: w(T)= (u,v) ∈ T w(u,v) is minimized

• The weight of a subgraph is
the sum of the weights of it
edges.

• A minimum spanning tree
for a weighted graph is a
spanning tree with minimum
weight.

• Can a graph have more
then one minimum
spanning tree?

Yes, maybe

Minimum Spanning Tree
• Consider a connected undirected graph where

– Each node x represents a country x
– Each edge (x, y) has a number which measures the

cost of placing telephone line between country x and
country y

• Problem: connecting all countries while
minimizing the total cost

• Solution: find a spanning tree with minimum total
weight, that is, minimum spanning tree

Formal definition of minimum
spanning tree

• Given a connected undirected graph G.
• Let T be a spanning tree of G.
• cost(T) = ∑e∈Tweight(e)
• The minimum spanning tree is a spanning tree T

which minimizes cost(T)

v1

v4

v3

v5

v2
5 2

3 7
8

4
Minimum
spanning
tree

Greedy Choice
We will show two ways to build a minimum

spanning tree.
• A MST can be grown from the current spanning

tree by adding the nearest vertex and the edge
connecting the nearest vertex to the MST.
(Prim's algorithm)

• A MST can be grown from a forest of spanning
trees by adding the smallest edge connecting
two spanning trees. (Kruskal's algorithm)

Notation

• Tree-vertices: in the tree constructed so far
• Non-tree vertices: rest of vertices

Prim’s Selection rule
• Select the minimum weight edge between a tree-

node and a non-tree node and add to the tree

The Prim’s algorithm Main Idea
This algorithm starts with one node. It then, one by one, adds a node that

is unconnected to the new tree to the new tree, each time selecting the
node whose connecting edge has the smallest weight out of the
available nodes’ connecting edges.

The steps are:

1. The new tree is constructed - with one node from the old graph.
2. While new tree has fewer than n nodes,

1. Find the node from the old graph with the smallest connecting edge
to the new tree,

2. Add it to the new tree

Every step will have joined one node, so that at the end we will have one
tree with all the nodes and it will be a minimum spanning tree of the original
graph.

The Prim’s algorithm Main Idea
Select a vertex to be a tree-node

while (there are non-tree vertices) {
if there is no edge connecting a tree
node with a non-tree node

return “no spanning tree”

select an edge of minimum weight
between a tree node and a non-tree
node

add the selected edge and its new
vertex to the tree
}

return tree

6 4

5

2

158

10
14

3

u

v

b

a

c

d

f

Prim’s algorithm
Algorithm PrimAlgorithm(v)
• Mark node v as visited and include it in the

minimum spanning tree;
• while (there are unvisited nodes) {

– find the minimum edge (v, u) between a visited node
v and an unvisited node u;

– mark u as visited;
– add both v and (v, u) to the minimum spanning tree;

}

Some Examples

Example #01

Start from v5, find the
minimum edge attach to v5

v2v1

v4

v3

v5

5 2
3 7
8

4

Find the minimum edge
attach to v3 and v5

v2v1

v4

v3

v5

5 2
3 7
8

4

Find the minimum edge
attach to v2, v3 and v5

v2v1

v4

v3

v5

5 2
3 7
8

4

v2v1

v4

v3

v5

5 2
3 7
8

4

v2v1

v4

v3

v5

5 2
3 7
8

4

Find the minimum edge
attach to v2, v3 , v4 and v5

Description Not
seen Fringe Solution

set

This is our original weighted graph. This is
not a tree because the definition of a tree
requires that there are no cycles and this
diagram contains cycles. A more correct
name for this diagram would be a graph or
a network. The numbers near the arcs
indicate their weight. None of the arcs are
highlighted, and vertex D has been
arbitrarily chosen as a starting point.

C, G A, B, E,
F D

Example #02 - 1

Description Not
seen Fringe Solution

set

The second chosen vertex is the vertex
nearest to D: A is 5 away, B is 9, E is 15, and
F is 6. Of these, 5 is the smallest, so we
highlight the vertex A and the arc DA.

C, G B, E, F A, D

Example #02 - 2

Description Not
seen Fringe Solution

set

The next vertex chosen is the vertex nearest to
either D or A. B is 9 away from D and 7 away
from A, E is 15, and F is 6. 6 is the smallest,
so we highlight the vertex F and the arc DF.

C B, E, G A, D, F

Example #02 - 3

Description Not
seen Fringe Solution

set

The algorithm carries on as above. Vertex B,
which is 7 away from A, is highlighted. Here,
the arc DB is highlighted in red, because both
vertex B and vertex D have been highlighted,
so it cannot be used.

null C, E, G A, D, F, B

Example #02 - 4

Description Not
seen Fringe Solution

set

In this case, we can choose between C, E, and
G. C is 8 away from B, E is 7 away from B,
and G is 11 away from F. E is nearest, so we
highlight the vertex E and the arc EB. Two
other arcs have been highlighted in red, as
both their joining vertices have been used.

null C, G A, D, F, B,
E

Example #02 - 5

Description Not
seen Fringe Solution

set

Here, the only vertices available are C and G.
C is 5 away from E, and G is 9 away from E. C
is chosen, so it is highlighted along with the arc
EC. The arc BC is also highlighted in red.

null G A, D, F, B,
E, C

Example #02 - 6

Description Not
seen Fringe Solution

set

Vertex G is the only remaining vertex. It is 11
away from F, and 9 away from E. E is nearer,
so we highlight it and the arc EG. Now all the
vertices have been highlighted, the minimum
spanning tree is shown in green. In this case, it
has weight 39.

null null A, D, F, B,
E, C, G

Example #02 - 7

Example #03

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Complete Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Old Graph New Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H
I

J

Complete Graph Minimum Spanning
Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Implementation Issues
• How is the graph implemented?

– Assume that we just added node u to the tree.
– The distance of the nodes adjacent to u to the tree may

now be decreased.
– There must be fast access to all the adjacent vertices.
– So using adjacency lists seems better

• How should the set of non-tree vertices be
represented?
– The operations are:

• build set
• delete node closest to tree
• decrease the distance of a non-tree node from the tree
• check whether a node is a non- tree node

Implementation Issues
• How should the set of non-tree vertices be

represented?
– A priority queue PQ may be used with the priority D[v]

equal to the minimum distance of each non-tree vertex v to
the tree.

– Each item in PQ contains: D[v], the vertex v, and the
shortest distance edge (v, u) where u is a tree node

• This means:
– build a PQ of non-tree nodes with initial values -

• fast build heap O (V)

• building an unsorted list O(V)
• building a sorted list O(V) (special case)

Implementation Issues
– delete node closest to tree (extractMin)

• O(lg V) if heap and
• O(V) if unsorted list
• O(1) sorted list

– decrease the distance of a non-tree node to the tree
– We need to find the location i of node v in the priority queue

and then execute (decreasePriorityValue(i, p)) where p is
the new priority

– decreasePriorityValue(i, p)
• O(lg V) for heap,
• O(1) for unsorted list
• O(V) for sorted list (too slow)

Implementation Issues
• What is the location i of node v in a priority queue?

– Find in Heaps, and sorted lists O(n)
– Unsorted – if the nodes are numbered 1 to n and we use an

array where node v is the v item in the array O(1)

Extended heap
– We will use extended heaps that contain a “handle” to the

location of each node in the heap.
– When a node is not in PQ the “handle” will indicate that this

is the case
– This means that we can access a node in the extended

heap in O(1), and check v ∈ PQ in O(1)
– Note that the “handle” must be updated whenever a heap

operation is applied

Implementation Issues
2. Unsorted list

– Array implementation where node v can be
accesses as PQ[v] in O(1), and the value of PQ[v]
indicates when the node is not in PQ.

Lines 1-5 initialize the priority queue PQ
to contain all Vertices. Ds for all
vertices except r, are set to infinity.
r is the starting vertex of the T
The T so far is empty

Add closest vertex and edge to current
T

Get all adjacent vertices v of u,
update D of each non-tree vertex
adjacent to u

Store the current minimum weight edge,
and updated distance in the priority
queue

Prim’s Algorithm

1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-heap(D,V, {})//No edges
5. T ← ∅
6.
7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T
10. for each v ∈ Adjacent (u)

// execute relaxation
11. do if v ∈PQ && w(u, v) < D [v]
12. then D [v] ← w (u, v)
13. PQ.decreasePriorityValue

(D[v], v, (u,v))
14. return T // T is a mst.

Prim’s Algorithm
Initialization

Prim (G)
1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-heap(D,V, {})//No edges
5. T ← ∅

Building the MST
// solution check

7. while PQ ≠ ∅ do
//Selection and feasibility
8. (u,e) ← PQ.extractMin()

// T contains the solution so far .
9. add (u,e) to T
10. for each v ∈ Adjacent (u)
11. do if v ∈ PQ && w(u, v) < D [v]
12. then D [v] ← w (u, v)
13. PQ.decreasePriorityValue

(D[v], v, (u,v))
14. return T

Using Extended Heap
implementation

Lines 1 -6 run in O (V)

Max Size of PQ is | V |

Count7 =O (V)
Count7(8) = O (V) ∗ O(lg V)

Count7(10) = O(Σdeg(u)) = O(E)
Count7(10(11)) = O(1)∗O(E)
Count7(10(11(12))) = O(1) ∗O(E)
Count7(10(13)) = O(lg V) ∗ O(E) Decrease-

Key operation on the extended heap can
be implemented

in O(lg V)
So total time for Prim's Algorithm is

O (V lg V + E lg V)
What is O(E) ?
Sparse Graph, E =O(V) , O (E lg V)=O(V lg V)
Dense Graph, E=O(V2), O (E lg V)=O(V2 lg V)

Time Analysis
1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-PQ(D,V, {})//No edges
5. T ← ∅
6.
7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T
10. for each v ∈ Adjacent (u)
11. do if v ∈PQ && w(u, v) < D [v]
12. then D [v] ← w (u, v)
13. PQ.decreasePriorityValue

(D[v], v, (u,v))
15. return T // T is a mst.
Assume a node in PQ can be accessed in
O(1)

** Decrease key for v requires O(lgV)
provided the node in heap with v’s data
can be accessed in O(1)

Using unsorted PQ

Lines 1 - 6 run in O (V)

Max Size of PQ is | V |
Count7 = O (V)
Count7(8) = O (V) ∗ O(V)

Count7(10) = O(Σdeg(u)) = O(E)
Count7(10(11)) = O(1)∗O(E)
Count7(10(11(12))) = O(1) ∗O(E)
Count7(10(13)) =O(1) ∗ O(E)

So total time for Prim's Algorithm is
O (V + V2 + E) = O (V2)

For Sparse/Dense graph : O(V2)
Note growth rate unchanged for adjacency

matrix graph representation

Time Analysis
1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-PQ(D,V, {})//No edges
5. T ← ∅
6.
7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T
10. for each v ∈ Adjacent (u)
11. do if v ∈PQ && w(u, v) < D [v]
12. then D [v] ← w (u, v)
13. PQ.decreasePriorityValue

(D[v], v, (u,v))
15. return T // T is a mst.

handle
A
B
C

1
2
3

Prim - extended Heap
After Initialization

T PQ

0, (A, {})

∞, (B, {}) ∞, (C, {})

1

2 3

A

B

C

2

5
6

G

Prim (G, r)
1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-heap(D,V, { })
5. T ← ∅

A
B
C

G

A 2

A 6

B 2 C 6

C 5

B 5

Prim - extended Heap
Build tree - after PQ.extractMin

handle

A
B
C

Null
2
1

T
(A, {})

PQ

∞, (C, {})

∞, (B, {})

1

2

A

C

2

5
6

G

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

B

Update B adjacent to A
handle

A
B
C

Null
1
2

T
(A, {})

PQ

2, (B, {A, B})

∞, (C, {})

1

2

A

C

2

5
6

G

10. for each v ∈ Adjacent (u)
11. // relaxation operation

// relaxation
11. do if v ∈PQ && w(u, v) < D [v]
12. then D [v] ← w (u, v)
13. PQ.decreasePriorityValue

(D[v], v, (u,v))

B

Update C adjacent to A
handle

A
B
C

Null
1
2

T
(A, {})

PQ

2, (B, {A, B})

6, (C, {A, C})

1

2A

B

C

2

5
6

G

Build tree - after PQ.extractMin
handle

A
B
C

Null
Null
1

T
(A, {})
(B, {A, B})

PQ

6, (C, {A, C})1

A

B

C

2

5
6

G

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

Update C adjacent to B
handle

A
B
C

Null
Null
1

T
(A, {})

PQT
(A, {})
(B, {A, B})

5, (C, {B, C})1

10. for each v ∈ Adjacent (u)
11. // relaxation operation

A

B
2

5
6

GC

Build tree - after PQ.extractMin
handle

A
B
C

Null
Null
Null

T
(A, {})

PQT
(A, {})
(B, {A, B})
(C, {B, C})

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

A

B
2

5
6

GC

Prim - unsorted list
After Initialization

T PQ
A BA

B

C

12

5
4

G

0, (A, {}) ∞, (B, {}) ∞, (C, {})

C

Prim (G, r)
1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-PQ(D,V, { })
5. T ← ∅

A
B
C

G

A 12

A 4

B 12 C 4

C 5

B 5

Build tree - after
PQ.extractMin
T
(A, {})

PQ
B

∞, (B, {}) ∞, (C, {})

C

Null

A

B

C

12

5
4

G

A

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

Update B, C adjacent to A
T
(A, {})

PQ
B

12, (B, {A, B}) 4, (C, {A, C})

C

Null

A

B

C

12

5
4

G

A

10. for each v ∈ Adjacent (u)
11. // relaxation operation

Build tree - after PQ.extractMin
T
(A, {})
(C, {A, C}) PQ

B

Null12, (B, {A, B})

C

Null

A
B

C

12

5
4

G

A

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

Update B adjacent to C
T
(A, {})

PQT
(A, {})
(C, {A, C})

B

Null5, (B, {C, B})

C

Null

A

10. for each v ∈ Adjacent (u)
11. // relaxation operation

B

C

12

5
4

G

A

Build tree - after PQ.extractMin
T
(A, {})

PQT
(A, {})
(C, {A, C})
(B, {C, B})

B

Null Null

C

Null

A

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T

B

C

12

5
4

G

A

Prim (G)
1. for each u ∈V
2. do D [u] ← ∞
3. D[r] ← 0
4. PQ ←make-heap(D,V, { })
5. T ← ∅

6 4

5

2

9

15

8

10
14

3

e

f

b

a

c

d

g

h

r

PQ = {(0,(a,∗)), (∞,(b,?)), ...(∞,(h,?))}

T = { }
G =

D = [0, ∞, …, ∞]

6 4

5

2

9

15

8

10
14

3

e

f

b

a

c

d

g

h

r

PQ = {

T = {

7. while PQ ≠ ∅ do
8. (u,e) ← PQ.extractMin()
9. add (u,e) to T
10. for each v ∈ Adjacent (u)
11. // relaxation operation
15. return T

G =

// relaxation
11. do if v ∈PQ && w(u, v) < D [v]
12. then D [v] ← w (u, v)
13. PQ.decreasePriorityValue

(D[v], v, (u,v))

D = [0,

Analysis of Prim's Algorithm

Running Time = O(m + n log n) (m = edges, n = nodes)
Acer Aspire 4920G-301G16Mi (008)
If a heap is not used, the run time will be O(n^2) instead of O(m + n log n).
However, using a heap complicates the code since you’re complicating the
data structure. A Fibonacci heap is the best kind of heap to use, but again, it
complicates the code.

Unlike Kruskal’s, it doesn’t need to see all of the graph at once. It can deal
with it one piece at a time. It also doesn’t need to worry if adding an edge will
create a cycle since this algorithm deals primarily with the nodes, and not the
edges.

For this algorithm the number of nodes needs to be kept to a minimum in
addition to the number of edges. For small graphs, the edges matter more,
while for large graphs the number of nodes matters more.

Kruskal's Algorithm: Main Idea

This algorithm creates a forest of trees. Initially the
forest consists of n single node trees (and no
edges). At each step, we add one edge (the
cheapest one) so that it joins two trees together.
If it were to form a cycle, it would simply link two
nodes that were already part of a single
connected tree, so that this edge would not be
needed.

Kruskal's Algorithm: Main Idea
The steps are:

1. The forest is constructed - with each node in a
separate tree.

2. The edges are placed in a priority queue.
3. Until we've added n-1 edges,

1. Extract the cheapest edge from the queue,
2. If it forms a cycle, reject it,
3. Else add it to the forest. Adding it to the forest will

join two trees together.

Every step will have joined two trees in the forest together,
so that at the end, there will only be one tree in T.

Kruskal's algorithm
• Step 1: Find the cheapest edge in the graph (if there is

more than one, pick one at random). Mark it with any
given colour, say red.

• Step 2: Find the cheapest unmarked (uncoloured) edge
in the graph that doesn't close a coloured or red circuit.
Mark this edge red.

• Step 3: Repeat Step 2 until you reach out to every vertex
of the graph (or you have N ; 1 coloured edges, where N
is the number of Vertices.) The red edges form the
desired minimum spanning tree.

solution = { }
while (more edges in E) do
// Selection

select minimum weight edge
remove edge from E
// Feasibility

if (edge closes a cycle with solution so far)
then reject edge
else add edge to solution

// Solution check
if |solution| = |V | - 1 return solution

return null // when does this happen?

Kruskal's Algorithm: Main Idea
6 4

5

2

158

10
14

3

u

v

b

a

c

d

f

Some Examples

Example #01

This is our original graph.
The numbers near the
arcs indicate their weight.
None of the arcs are
highlighted.

AD and CE are the
shortest arcs, with
length 5, and AD has
been chosen, so it is
highlighted.

Example #01

However, CE is now the
shortest arc that does not
form a cycle, with length 5,
so it is highlighted as the
second arc.

The next arc, DF with
length 6, is highlighted
using much the same
method.

Example #01

The next-shortest arcs are
AB and BE, both with length
7. AB is chosen arbitrarily,
and is highlighted. The arc
BD has been highlighted in
red, because it would form a
cycle ABD if it were chosen.

The process continues to highlight the
next-smallest arc, BE with length 7. Many
more arcs are highlighted in red at this
stage: BC because it would form the loop
BCE, DE because it would form the loop
DEBA, and FE because it would form
FEBAD.

Example #01

Finally, the process finishes
with the arc EG of length 9,
and the minimum spanning
tree is found.

Example #02

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Complete Graph

1

4

2

5

2

5

4

3

4

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

A AB D

B B

B

C D

J C

C

E

F

D

D H

J E G

F FG I

G GI J

H J JI

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Sort Edges
(in reality they are placed in a priority
queue - not sorted - but sorting them

makes the algorithm easier to
visualize)

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H
I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H
I

J

Minimum Spanning Tree Complete Graph

6 4

5

2

9

15

8

10
14

3

e

f

b

a

c

d

g

h

C = { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }
C is a forest of trees.

Kruskal's Algorithm:
1. Sort the edges E in non-
decreasing

weight
2. T ← ∅
3. For each v ∈V create a set.
4. repeat
5. Select next {u,v} ∈ E, in order
6. ucomp ← find (u)
7. vcomp ← find (v)
8. if ucomp ≠ vcomp then
8. add edge (u,v) to T
9. union (ucomp,vcomp)
10.until T contains |V | - 1 edges
11. return tree T

Kruskal - Disjoint set
After Initialization

TA

B

C

2

5
6

G

1. Sort the edges E in non-
decreasing

weight
2. T ← ∅

3. For each v ∈V create a set.

A B 2
Sorted edges

B C 5

A C 6

A B C
Disjoint data set for G

D

B D 7
7

D

Kruskal - add minimum weight
edge if feasible

A

C

2

5
6

G

B

5. for each {u,v} ∈ in ordered E
6. ucomp ← find (u)
7. vcomp ← find (v)
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union(ucomp,vcomp)

T
Sorted edges

A B C
Disjoint data set for G

Find(A) Find(B)

A
B

C

After merge(A, B)

(A, B) A B 2

B C 5

A C 6

B D 7

D

D

7

D

Kruskal - add minimum weight
edge if feasible

A

C

2

5
6

G

B

5. for each {u,v} ∈ in ordered E
6. ucomp ← find (u)
7. vcomp ← find (v)
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union (ucomp,vcomp)

T

A

B

C

Find(B) Find(C)

A
B C

After merge(A, C)

(A, B)

(B, C)

Sorted edges A B 2

B C 5

A C 6

B D 7

D

D

7

D

Kruskal - add minimum weight
edge if feasible

A

C

2

5
6

G

B

5. for each {u,v} ∈ in ordered E
6. ucomp ← find (u)
7. vcomp ← find (v)
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union (ucomp,vcomp)

T

A

B C

Find(A) Find(C)

A and C in same set

(A, B)

(B, C)

Sorted edges A B 2

B C 5

A C 6

B D 7

D

7

D

Kruskal - add minimum weight
edge if feasible

A

C

2

5
6

G

B

5. for each {u,v} ∈ in ordered E
6. ucomp ← find (u)
7. vcomp ← find (v)
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union (ucomp,vcomp)

T

A

B C

Find(B) Find(D)

(A, B)

(B, C)

(B, D)

Sorted edges A B 2

B C 5

A C 6

B D 7

D

A

B C D

After merge

7

D

Analysis of Kruskal's Algorithm

Running Time = O(m log n) (m = edges, n = nodes)

Testing if an edge creates a cycle can be slow unless a
complicated data structure called a “union-find” structure is used.

It usually only has to check a small fraction of the edges, but in
some cases (like if there was a vertex connected to the graph by
only one edge and it was the longest edge) it would have to
check all the edges.

This algorithm works best, of course, if the number of edges is
kept to a minimum.

Kruskal (G)
1. Sort the edges E in non-decreasing

weight
2. T ← ∅
3. For each v ∈V create a set.
4. repeat
5. {u,v} ∈ E, in order
6. ucomp ← find (u)
7. vcomp ← find (v)
8. if ucomp ≠ vcomp then
9. add edge (v,u) to T
10. union (ucomp,vcomp)
11.until T contains |V | - 1 edges
12. return tree T

Count1 = Θ(E lg E)

Count2= Θ(1)
Count3= Θ(V)
Count4 = O(E)

Using Disjoint set-height and
path compression

Count4(6+7+10)=
O((E +V) α(V))

Sorting dominates the runtime.
We get T(E,V) = Θ(E lg E),
so for a sparse graph we get
Θ(V lg V)
for a dense graph we get
Θ(V2 lg V2) = Θ(V2 lg V)

Kruskal's Algorithm: Time
Analysis

Minimum Spanning Tree
Given the weighted graph below:

1. Use Kruskal's algorithm to find a
minimum spanning tree and indicate the
edges in the graph shown below: Indicate
on the edges that are selected the order
of their selection.

2. Use Prim's algorithm to find the
minimum spanning tree and indicate the
edges in the graph shown below. Indicate
on the edges that are selected the order
of their selection.

Minimum Spanning Tree
• http://www.cse.yorku.ca/~aaw/Ghiassi/MST/MSTAlg.htm

http://www.cse.yorku.ca/~aaw/Ghiassi/MST/MSTAlg.htm

