Graphs

Today

- Graph Traversal

- Topological Sort

What is a graph?

- Graphs represent the relationships among data items
- A graph G consists of
- a set V of nodes (vertices)
- a set E of edges: each edge connects two nodes
- Each node represents an item
- Each edge represents the relationship between two items

Examples of graphs

Molecular Structure

Computer Network

Other examples: electrical and communication networks, airline routes, flow chart, graphs for planning projects

Formal Definition of graph

- The set of nodes is denoted as V
- For any nodes u and v, if u and v are connected by an edge, such edge is denoted as (u, v)

- The set of edges is denoted as E
- A graph G is defined as a pair (V, E)

Adjacent

- Two nodes u and v are said to be adjacent if $(u, v) \in E$

Path and simple path

- A path from v_{1} to v_{k} is a sequence of nodes $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ that are connected by edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k-1}, v_{k}\right)$
- A path is called a simple path if every node appears at most once.
$v_{2}, v_{3}, v_{4}, v_{2}, v_{1}$ is a path $v_{2}, v_{3}, v_{4}, v_{5}$ is a path, also
 it is a simple path

Cycle and simple cycle

- A cycle is a path that begins and ends at the same node
- A simple cycle is a cycle if every node appears at most once, except for the first and the last nodes

Connected graph

- A graph G is connected if there exists path between every pair of distinct nodes; otherwise, it is disconnected

This is a connected graph because there exists path between every pair of nodes

Example of disconnected graph

This is a disconnected graph because there does not exist path between some pair of nodes, says, v_{1} and v_{7}

Connected component

- If a graph is disconnect, it can be partitioned into a number of graphs such that each of them is connected. Each such graph is called a connected component.

Complete graph

- A graph is complete if each pair of distinct nodes has an edge

Complete graph
with 3 nodes

Complete graph with 4 nodes

Subgraph

- A subgraph of a graph $G=(V, E)$ is a graph $\mathrm{H}=(\mathrm{U}, \mathrm{F})$ such that $\mathrm{U} \subseteq \mathrm{V}$ and $\mathrm{F} \subseteq \mathrm{E}$.

G

H

Weighted graph

- If each edge in G is assigned a weight, it is called a weighted graph

Directed graph (digraph)

- All previous graphs are undirected graph
- If each edge in E has a direction, it is called a directed edge
- A directed graph is a graph where every edges is a directed edge

More on directed graph

- If (x, y) is a directed edge, we say
$-y$ is adjacent to x
$-y$ is successor of x
$-x$ is predecessor of y
- In a directed graph, directed path, directed cycle can be defined similarly

Multigraph

- A graph cannot have duplicate edges.
- Multigraph allows multiple edges and self edge (or loop).

Property of graph

- A undirected graph that is connected and has no cycle is a tree.
- A tree with n nodes have exactly $n-1$ edges.
- A connected undirected graph with n nodes must have at least $\mathrm{n}-1$ edges.

Implementing Graph

- Adjacency matrix
- Represent a graph using a two-dimensional array
- Adjacency list
- Represent a graph using n linked lists where n is the number of vertices

Adjacency matrix for directed graph

Adjacency matrix for weighted undirected graph

Matrix [i][j] $=w\left(v_{i}, v_{i}\right) \quad$ if $\left(v_{i}, v_{j}\right) \in E$ or $\left(v_{i}, v_{i}\right) \in E$
 ∞ otherwise

$$
12345
$$

Adjacency list for directed graph

Adjacency list for weighted undirected graph

Pros and Cons

- Adjacency matrix
- Allows us to determine whether there is an edge from node i to node j in $O(1)$ time
- Adjacency list
- Allows us to find all nodes adjacent to a given node j efficiently
- If the graph is sparse, adjacency list requires less space

Problems related to Graph

- Graph Traversal
- Topological Sort
- Spanning Tree
- Minimum Spanning Tree

- Shortest Path

Graph Traversal Algorithm

- To traverse a tree, we use tree traversal algorithms like pre-order, in-order, and postorder to visit all the nodes in a tree
- Similarly, graph traversal algorithm tries to visit all the nodes it can reach.
- If a graph is disconnected, a graph traversal that begins at a node v will visit only a subset of nodes, that is, the connected component containing v .

Two basic traversal algorithms

- Two basic graph traversal algorithms:
- Depth-first-search (DFS)
- After visit node v, DFS strategy proceeds along a path from v as deeply into the graph as possible before backing up
- Breadth-first-search (BFS)
- After visit node v , BFS strategy visits every node adjacent to v before visiting any other nodes

Breadth-first search

- One of the simplest algorithms
- Also one of the most important
- It forms the basis for MANY graph algorithms

BFS: Level-by-level traversal

- Given a starting vertex s
- Visit all vertices at increasing distance from s
- Visit all vertices at distance k from s
- Then visit all vertices at distance $k+1$ from s - Then

BFS in a binary tree (reminder)

BFS: visit all siblings before their descendents

BFS(tree t)

1. NodePrt curr;
2. Queue q;
3. initialize(q);
4. Insert(q,t);
5. while (not Isempty(q))
6. curr $=\operatorname{delete}(\mathrm{q})$
7. visit curr // e.g., print curr.datum
8. insert(q, curr->left)
9. insert(q, curr->right)

This version for binary trees only!

BFS for general graphs

- This version assumes vertices have two children
- left, right
- This is trivial to fix
- But still no good for general graphs
- It does not handle cycles

Example.

Queue: A

Start with A. Put in the queue (marked red)

Queue: A B E

Queue: A B E C G D F

When we go to B, we put G and C in the queue

When we go to E, we put D and F in the queue

Queue: A B E C G D F

When we go to B, we put G and C in the queue

When we go to E, we put D and F in the queue

Queue: A B E C G D F F

Suppose we now want to expand C. We put F in the queue again!

Generalizing BFS

- Cycles:
- We need to save auxiliary information
- Each node needs to be marked
- Visited: \quad No need to be put on queue
- Not visited: Put on queue when found

What about assuming only two children vertices?

- Need to put all adjacent vertices in queue

The general BFS algorithm

- Each vertex can be in one of three states:
- Unmarked and not on queue
- Marked and on queue
- Marked and off queue
- The algorithm moves vertices between these states

Handling vertices

- Unmarked and not on queue:
- Not reached yet
- Marked and on queue:
- Known, but adjacent vertices not visited yet (possibly)
- Marked and off queue:
- Known, all adjacent vertices on queue or done with

Queue: A

Start with A. Mark it.

Queue: A B E

Expand A's adjacent vertices.
Mark them and put them in queue.

Queue: A B E C G

Now take B off queue, and queue its neighbors.

Queue: A B E C G D F

Do same with E.

Queue: A B E C G D F

Visit C.
Its neighbor F is already marked, so not queued.

Queue: A B E C G D F

Visit G.

Queue: A B EC G D F

Visit D. F, E marked so not queued.

Queue: A B E C G D F

Visit F.
E, D, C marked, so not queued again.

Queue: A B E C G D F

Done. We have explored the graph in order:
ABECGDF.

Breadth-first search (BFS)

- BFS strategy looks similar to level-order. From a given node v, it first visits itself. Then, it visits every node adjacent to v before visiting any other nodes.
- 1. Visit v
- 2. Visit all v's neigbours
- 3. Visit all v's neighbours' neighbours
- ...
- Similar to level-order, BFS is based on a queue.

BFS(graph g, vertex s)

1. unmark all vertices in G;
2. Creat a queue q;
3. mark s;
4. insert (s,q)
5. while (!isempty (q))
6. curr = delete(q);
7. visit curr; // e.g., print its data
8. for each edge <curr, $V>$
9. if V is unmarked
10.
11. mark V;
insert (V,q);

BFS example

- Start from V_{5}

	Visit Queue (front to back) v_{5} v_{5} empty v_{3} v_{3} v_{4} $\mathrm{v}_{3}, \mathrm{v}_{4}$ v_{4} v_{2} $\mathrm{v}_{4}, \mathrm{v}_{2}$ v_{2} empty v_{1} v_{1} empty

Interesting features of BFS

- Complexity: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- All vertices put on queue exactly once
- For each vertex on queue, we expand its edges
- In other words, we traverse all edges once
- BFS finds shortest path from s to each vertex
- Shortest in terms of number of edges
- Why does this work?

Depth-first search

- Again, a simple and powerful algorithm
- Given a starting vertex s
- Pick an adjacent vertex, visit it.
- Then visit one of its adjacent vertices
-
- Until impossible, then backtrack, visit another

DFS(graph g, vertex s)

Assume all vertices initially unmarked

1. mark s;
2. visit s; // e.g., print its data
3. for each edge <s, V>
4.

if V is not marked
5. DFS (G, V);

Current vertex: A

Start with A. Mark it.

Current: B

Expand A's adjacent vertices. Pick one (B). Mark it and re-visit.

Current: C

Now expand B, and visit its neighbor, C.

Current: F

Visit F.
Pick one of its neighbors, E .

Current: E

E's adjacent vertices are A, D and F.
A and F are marked, so pick D.

Current: D

Visit D. No new vertices available. Backtrack to
E. Backtrack to F. Backtrack to C. Backtrack to B

Current: G

Visit G. No new vertices from here. Backtrack to
B. Backtrack to A. E already marked so no new.

Current:

Done. We have explored the graph in order: ABCFEDG

Interesting features of DFS

- Complexity: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- All vertices visited once, then marked
- For each vertex on queue, we examine all edges
- In other words, we traverse all edges once
- DFS does not necessarily find shortest path
- Why?

Depth-first search (DFS)

- DFS strategy looks similar to pre-order. From a given node v , it first visits itself. Then, recursively visit its unvisited neighbours one by one.
- DFS can be defined recursively as follows.

Algorithm DFS(v)
printf v ; // you can do other things!
mark v as visited; for (each unvisited node u adjacent to v) DFS(u);

DFS example

- Start from V_{3}

Non-recursive version of DFS algorithm

Algorithm dfs(v) Initialize(s);
push(v,s);
mark v as visited;
while (!isEmpty(s)) \{
let x be the node on the top of the stack s;
if (no unvisited nodes are adjacent to x)
pop(s); // blacktrack
else \{
select an unvisited node u adjacent to x;
push(u,s);
mark u as visited;

Non-recursive DFS example

	visit stack v_{3} v_{3} v_{2} $\mathrm{v}_{3}, \mathrm{v}_{2}$ v_{1} $\mathrm{v}_{3}, \mathrm{v}_{2}, \mathrm{v}_{1}$ backtrack $\mathrm{v}_{3}, \mathrm{v}_{2}$ v_{4} $\mathrm{v}_{3}, \mathrm{v}_{2}, \mathrm{v}_{4}$ v_{5} $\mathrm{v}_{3}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}$ backtrack $\mathrm{v}_{3}, \mathrm{v}_{2}, \mathrm{v}_{4}$ backtrack $\mathrm{v}_{3}, \mathrm{v}_{2}$ backtrack v_{3} backtrack empty

Topological order

- Consider the prerequisite structure for courses:

- Each node x represents a course x
- (x, y) represents that course x is a prerequisite to course y
- Note that this graph should be a directed graph without cycles (called a directed acyclic graph).
- A linear order to take all 5 courses while satisfying all prerequisites is called a topological order.
- E.g.
- a, c, b, e, d
- c, a, b, e, d

Topological Sort

- Topological sort: ordering of vertices in a directed acyclic graph such that if there is a path from vi to vj then vj appears after vi in the ordering
- Application: scheduling jobs.
- Each job is a vertex in a graph, and there is an edge from x to y if job x must be completed before job y can be done.
- topological sort gives the order in which to perform the jobs.
- Instruction scheduling in
- Example: Topological sort

Topological Sort

Topological sorts:
7, 5, 3, 11, 8, 2, 10, 9
$5,7,3,11,8,2,10,9$
$5,7,11,2,3,8,9,10$

Topological sort

- Arranging all nodes in the graph in a topological order

Algorithm topSort1
$\mathrm{n}=|\mathrm{V}|$;
for $\mathrm{i}=1$ to n \{
select a node v that has no successor (no outgoing edge);
print this vertex; delete node v and its edges from the graph;

Example

(c)

3. Both b and c have no successor! Choose c!

(a)

> Both b and e have no successor! Choose e!

(a)

5. Choose a! The topological order is a, b, c, e, d

Topological sort

- Arranging all nodes in the graph in a topological order

Algorithm topSort2
$\mathrm{n}=|\mathrm{V}|$;
for $\mathrm{i}=1$ to $\mathrm{n}\{$
select a node v that has no ancestors (no incoming edges);
print this vertex;
delete node v and its edges from the graph;

Example

Topological Sorting

- What happens if graph has a cycle?
- Topological ordering is not possible
- For two vertices v \& w, v precedes w and w precedes v

Every edge has an incoming vertex so topological sort can not be performed

- Topological sorts can have more than one ordering

Topological Sorting

```
L }\leftarrow\mathrm{ Empty list that will contain the sorted elements
S }\leftarrow\mathrm{ Set of all nodes with no incoming edges
while S is non-empty do
    remove a node n from S
    insert n into L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S
if graph has edges then
    output error message (graph has at least one cycle)
else
output message (proposed topologically sorted order: L)
```


Topological sort algorithm 2

- This algorithm is based on DFS

Algorithm topSort2
createStack(s);
for (all nodes v in the graph) \{
if (v has no incomming edges) \{
push(v,s);
mark v as visited;
\} \}
while (!isEmpty(s)) \{
let x be the node on the top of the stack s ;
if (no unvisited nodes are adjacent to x) \{ // i.e. x has no unvisited successor printf x ;
pop(s); // blacktrack
\} else \{
select an unvisited node u adjacent to x;
push(u,s);
mark u as visited;
\}

