
Graphs

Today

• Graph Traversal
• Topological Sort



What is a graph?
• Graphs represent the relationships among data 

items
• A graph G consists of

– a set V of nodes (vertices)
– a set E of edges: each edge connects two nodes

• Each node represents an item
• Each edge represents the relationship between 

two items
node

edge

Examples of graphs

H

H

C HH

Molecular Structure

Server 1

Server 2

Terminal 1

Terminal 2

Computer Network

Other examples: electrical and communication networks, 
airline routes, flow chart, graphs for planning projects



Formal Definition of graph
• The set of nodes is denoted as V
• For any nodes u and v, if u and v are 

connected by an edge, such edge is denoted 
as (u, v)

• The set of edges is denoted as E
• A graph G is defined as a pair (V, E)

v

u

(u, v)

Adjacent

• Two nodes u and v are said to be adjacent
if (u, v) ∈ E

v

wu

(u, v)

u and v are adjacent
v and w are not adjacent



Path and simple path
• A path from v1 to vk is a sequence of 

nodes v1, v2, …, vk that are connected by 
edges (v1, v2), (v2, v3), …, (vk-1, vk)

• A path is called a simple path if every 
node appears at most once.

v1
v2

v4

v3

v5
- v2, v3, v4, v2, v1 is a path
- v2, v3, v4, v5 is a path, also 
it is a simple path

Cycle and simple cycle
• A cycle is a path that begins and ends at 

the same node
• A simple cycle is a cycle if every node 

appears at most once, except for the first 
and the last nodes

v1
v2

v4

v3

v5

- v2, v3, v4, v5 , v3, v2 is a cycle
- v2, v3, v4, v2 is a cycle, it is 
also a simple cycle



Connected graph

• A graph G is connected if there exists path 
between every pair of distinct nodes; 
otherwise, it is disconnected

v1

v4

v3

v5

v2

This is a connected graph because there exists path 
between every pair of nodes

Example of disconnected graph

v1

v4

v3

v5

v2

This is a disconnected graph because there does not 
exist path between some pair of nodes, says, v1 and v7

v7

v6

v8

v9



Connected component
• If a graph is disconnect, it can be partitioned into 

a number of graphs such that each of them is 
connected. Each such graph is called a 
connected component. 

v1

v4

v3

v5

v2 v7

v6

v8

v9

Complete graph

• A graph is complete if each pair of distinct 
nodes has an edge

Complete graph
with 3 nodes

Complete graph
with 4 nodes



Subgraph
• A subgraph of a graph G =(V, E) is a 

graph H = (U, F) such that U ⊆ V and 
F ⊆ E.

v1

v4

v3

v5

v2

G
v4

v3

v5

v2

H

Weighted graph
• If each edge in G is assigned a weight, it is 

called a weighted graph

Houston

Chicago 1000

2000
3500

New York



Directed graph (digraph)
• All previous graphs are undirected graph
• If each edge in E has a direction, it is called a directed 

edge
• A directed graph is a graph where every edges is a 

directed edge

Directed edge

Houston

Chicago 1000

2000 3500

New York

More on directed graph

• If (x, y) is a directed edge, we say 
– y is adjacent to x
– y is successor of x
– x is predecessor of y

• In a directed graph, directed path, directed 
cycle can be defined similarly

yx



Multigraph

• A graph cannot have duplicate edges.
• Multigraph allows multiple edges and self 

edge (or loop).

Multiple edgeSelf edge

Property of graph

• A undirected graph that is connected and 
has no cycle is a tree.

• A tree with n nodes have exactly n-1 
edges.

• A connected undirected graph with n 
nodes must have at least n-1 edges.



Implementing Graph

• Adjacency matrix
– Represent a graph using a two-dimensional 

array
• Adjacency list

– Represent a graph using n linked lists where 
n is the number of vertices

Adjacency matrix for directed graph

v1

v4

v3

v5

v2

G

1 2 3 4 5
v1 v2 v3 v4 v5

1 v1 0 1 0 0 0
2 v2 0 0 0 1 0
3 v3 0 1 0 1 0
4 v4 0 0 0 0 0
5 v5 0 0 1 1 0

Matrix[i][j] = 1 if (vi, vj)∈E
0 if (vi, vj)∉E



Adjacency matrix for weighted 
undirected graph

v1

v4

v3

v5

v2

G

1 2 3 4 5
v1 v2 v3 v4 v5

1 v1 ∞ 5 ∞ ∞ ∞
2 v2 5 ∞ 2 4 ∞
3 v3 0 2 ∞ 3 7
4 v4 ∞ 4 3 ∞ 8
5 v5 ∞ ∞ 7 8 ∞

Matrix[i][j] = w(vi, vj) if (vi, vj)∈E or (vj, vi)∈E
∞ otherwise

5 2

3 7
8

4

Adjacency list for directed graph

v1

v4

v3

v5

v2

G

1 v1 → v2

2 v2 → v4

3 v3 → v2 → v4

4 v4

5 v5 → v3 → v4



Adjacency list for weighted 
undirected graph

v1

v4

v3

v5

v2

G

5 2

3 7
8

4
1 v1 → v2(5)
2 v2 → v1(5) → v3(2) → v4(4)
3 v3 → v2(2) → v4(3) → v5(7)
4 v4 → v2(4) → v3(3) → v5(8)
5 v5 → v3(7) → v4(8)

Pros and Cons

• Adjacency matrix
– Allows us to determine whether there is an 

edge from node i to node j in O(1) time
• Adjacency list

– Allows us to find all nodes adjacent to a given 
node j efficiently

– If the graph is sparse, adjacency list requires 
less space



Problems related to Graph

• Graph Traversal
• Topological Sort
• Spanning Tree
• Minimum Spanning Tree
• Shortest Path

Graph Traversal Algorithm
• To traverse a tree, we use tree traversal 

algorithms like pre-order, in-order, and post-
order to visit all the nodes in a tree

• Similarly, graph traversal algorithm tries to visit 
all the nodes it can reach.

• If a graph is disconnected, a graph traversal that 
begins at a node v will visit only a subset of 
nodes, that is, the connected component
containing v.



Two basic traversal algorithms

• Two basic graph traversal algorithms:
– Depth-first-search (DFS)

• After visit node v, DFS strategy proceeds along a 
path from v as deeply into the graph as possible 
before backing up

– Breadth-first-search (BFS)
• After visit node v, BFS strategy visits every node 

adjacent to v before visiting any other nodes

Breadth-first search

• One of the simplest algorithms
• Also one of the most important

– It forms the basis for MANY graph algorithms



BFS: Level-by-level traversal

• Given a starting vertex s
• Visit all vertices at increasing distance 

from s
– Visit all vertices at distance k from s
– Then visit all vertices at distance k+1 from s
– Then ….

BFS in a binary tree (reminder)

BFS: visit all siblings before their descendents

5

2

1 3

8

6 10

7 9
5 2 8 1 3 6 10 7 9



BFS(tree t)
1. NodePrt curr;
2. Queue q;
3. initialize(q);
4. Insert(q,t);
5. while (not Isempty(q))
6. curr = delete(q)
7. visit curr // e.g., print curr.datum
8. insert(q, curr->left)
9. insert(q, curr->right)

This version for binary trees only!

BFS for general graphs

• This version assumes vertices have two 
children 
– left, right
– This is trivial to fix

• But still no good for general graphs
• It does not handle cycles

Example.



Start with A.  Put in the queue (marked red)

A

B

G C

E

D

F

Queue: A

B and E are next

A

B

G C

E

D

F

Queue: A B E



When we go to B, we put G and C in the queue

When we go to E, we put D and F in the queue

A

B

G C

E

D

F

Queue: A B E C G D F

When we go to B, we put G and C in the queue

When we go to E, we put D and F in the queue

A

B

G C

E

D

F

Queue: A B E C G D F



Suppose we now want to expand C.
We put F in the queue again!

A

B

G C

E

D

F

Queue: A B E C G D F F

Generalizing BFS

• Cycles:
• We need to save auxiliary information
• Each node needs to be marked

– Visited: No need to be put on queue
– Not visited: Put on queue when found

What about assuming only two children vertices?
• Need to put all adjacent vertices in queue



The general BFS algorithm

• Each vertex can be in one of three states:
– Unmarked and not on queue
– Marked and on queue
– Marked and off queue

• The algorithm moves vertices between these 
states

Handling vertices

• Unmarked and not on queue:
– Not reached yet

• Marked and on queue:
– Known, but adjacent vertices not visited yet 

(possibly)
• Marked and off queue:

– Known, all adjacent vertices on queue or done 
with



Start with A. Mark it.

A

B

G C

E

D

F

Queue: A

Expand A’s adjacent vertices. 
Mark them and put them in queue.

A

B

G C

E

D

F

Queue: A B E 



Now take B off queue, and queue its 
neighbors.

A

B

G C

E

D

F

Queue: A B E C G

Do same with E.

A

B

G C

E

D

F

Queue: A B E C G D F



Visit C. 
Its neighbor F is already marked, so not 

queued.

A

B

G C

E

D

F

Queue: A B E C G D F

Visit G. 

A

B

G C

E

D

F

Queue: A B E C G D F



Visit D.  F, E marked so not queued.

A

B

G C

E

D

F

Queue: A B E C G D F

Visit F. 
E, D, C marked, so not queued again.

A

B

G C

E

D

F

Queue: A B E C G D F



Done.  We have explored the graph in order:
A B E C G D F.

A

B

G C

E

D

F

Queue: A B E C G D F

Breadth-first search (BFS)
• BFS strategy looks similar to level-order. From a 

given node v, it first visits itself. Then, it visits 
every node adjacent to v before visiting any 
other nodes.
– 1. Visit v
– 2. Visit all v’s neigbours
– 3. Visit all v’s neighbours’ neighbours
– …

• Similar to level-order, BFS is based on a queue.



BFS(graph g, vertex s)
1. unmark all vertices in G;
2. Creat a queue q;
3. mark s;
4. insert(s,q)
5. while (!isempty(q))
6. curr = delete(q);
7. visit curr; // e.g., print its data
8. for each edge <curr, V>
9. if V is unmarked
10. mark V;
11. insert(V,q);

BFS example
• Start from v5

v5

1

v3
2

v4
3

v2
4

v1
5

v1

v4

v3

v5

v2

G
x

Visit Queue 
(front to 
back)

v5 v5

empty
v3 v3

v4 v3, v4

v4

v2 v4, v2

v2

empty
v1 v1

empty

x
x

x x



Interesting features of BFS

• Complexity: O(|V| + |E|)
– All vertices put on queue exactly once
– For each vertex on queue, we expand its edges
– In other words, we traverse all edges once

• BFS finds shortest path from s to each 
vertex
– Shortest in terms of number of edges
– Why does this work?

Depth-first search

• Again, a simple and powerful algorithm
• Given a starting vertex s
• Pick an adjacent vertex, visit it.

– Then visit one of its adjacent vertices
– …..
– Until impossible, then backtrack, visit another 



DFS(graph g, vertex s)
Assume all vertices initially 

unmarked
1. mark s;
2. visit s; // e.g., print its data
3. for each edge <s, V>
4. if V is not marked
5. DFS(G, V);

Start with A. Mark it.

A

B

G C

E

D

F

Current vertex: A



Expand A’s adjacent vertices.  Pick one (B). 
Mark it and re-visit.

A

B

G C

E

D

F

Current: B 

Now expand B, and visit its neighbor, C.

A

B

G C

E

D

F

Current: C



Visit F. 
Pick one of its neighbors, E.

A

B

G C

E

D

F

Current: F

E’s adjacent vertices are A, D and F. 
A and F are marked, so pick D.

A

B

G C

E

D

F

Current: E 



Visit D.  No new vertices available. Backtrack to 
E.  Backtrack to F. Backtrack to C.  Backtrack to B

A

B

G C

E

D

F

Current: D 

Visit G.  No new vertices from here.  Backtrack to
B. Backtrack to A.  E already marked so no new.

A

B

G C

E

D

F

Current: G 



Done.  We have explored the graph in order:
A B C F E D G 

A

B

G C

E

D

F

Current:

1

2

3

4

6
7

5

Interesting features of DFS

• Complexity: O(|V| + |E|)
– All vertices visited once, then marked
– For each vertex on queue, we examine all 

edges
– In other words, we traverse all edges once

• DFS does not necessarily find shortest path
– Why?



Depth-first search (DFS)
• DFS strategy looks similar to pre-order. From a given 

node v, it first visits itself. Then, recursively visit its 
unvisited neighbours one by one.

• DFS can be defined recursively as follows.

Algorithm DFS(v)
printf v; // you can do other things!
mark v as visited;
for (each unvisited node u adjacent to v)

DFS(u);

DFS example
• Start from v3

v1

v4

v3

v5

v2

G

v3
1

v2
2

v1
3

v4

4

v5

5

xxx
x x



Non-recursive version of DFS 
algorithm

Algorithm dfs(v)
Initialize(s);
push(v,s);
mark v as visited;
while (!isEmpty(s)) {

let x be the node on the top of the stack s;
if (no unvisited nodes are adjacent to x)

pop(s); // blacktrack
else {

select an unvisited node u adjacent to x;
push(u,s);
mark u as visited;

}
}

Non-recursive DFS example

v1

v4

v3

v5

v2

G

visit stack
v3 v3

v2 v3, v2

v1 v3, v2, v1

backtrack v3, v2

v4 v3, v2, v4

v5 v3, v2, v4 , v5

backtrack v3, v2, v4 

backtrack v3, v2

backtrack v3

backtrack empty

xxx
x x



Topological order
• Consider the prerequisite structure for courses:

• Each node x represents a course x
• (x, y) represents that course x is a prerequisite to course y
• Note that this graph should be a directed graph without cycles 

(called a directed acyclic graph).
• A linear order to take all 5 courses while satisfying all prerequisites 

is called a topological order.
• E.g. 

– a, c, b, e, d
– c, a, b, e, d

b d

ec

a

Topological Sort
• Topological sort: ordering of vertices in a 

directed acyclic graph such that if there is a path 
from vi to vj then vj appears after vi in the 
ordering

• Application: scheduling jobs.
– Each job is a vertex in a graph, and there is an edge 

from x to y if job x must be completed before job y can 
be done. 

– topological sort gives the order in which to perform 
the jobs. 

– Instruction scheduling in 
– Example: Topological sort



Topological Sort

7 5 3

2

811

109

Topological sorts:
7, 5, 3, 11, 8, 2, 10, 9
5, 7, 3, 11, 8, 2, 10, 9
5, 7, 11, 2, 3, 8, 9, 10

Topological sort
• Arranging all nodes in the graph in a topological 

order

Algorithm topSort1
n = |V|;
for i = 1 to n {

select a node v that has no successor (no outgoing 
edge);
print this vertex; 
delete node v and its edges from the graph;

}



Example
b d

ec

a

1. d has no 
successor! 
Choose d!

a

5. Choose a!
The topological order

is a,b,c,e,d

2. Both b and e have no 
successor! Choose e!

b

ec

a

3. Both b and c have 
no successor! 
Choose c!

b

c

a

4. Only b has no 
successor! 
Choose b!

b
a

Topological sort
• Arranging all nodes in the graph in a topological 

order

Algorithm topSort2
n = |V|;
for i = 1 to n {

select a node v that has no ancestors (no incoming 
edges);
print this vertex; 
delete node v and its edges from the graph;

}



Example
b d

ec

a

1. a has no 
ancestors! 
Choose a!

e

5. Choose e!
The topological order

is a,b,c,e,d

2. Both b and c have no 
ancestosr! Choose b!

3. Only c has no 
ancestors! Choose 
c!

4. Only e has no 
ancestors!
Choose !

b d

ec

d

ec

d

e

Topological Sorting
• What happens if graph has a cycle?

– Topological ordering is not possible
– For two vertices v & w, v precedes w and w precedes 

v

• Topological sorts can have more than one 
ordering 

1 2

3
Every edge has an
incoming vertex so
topological sort can not
be performed



Topological Sorting
L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do

remove a node n from S
insert n into L
for each node m with an edge e from n to m do

remove edge e from the graph
if m has no other incoming edges then

insert m into S
if graph has edges then

output error message (graph has at least one cycle)
else

output message (proposed topologically sorted order: L)

Topological sort algorithm 2
• This algorithm is based on DFS
Algorithm topSort2
createStack(s);
for (all nodes v in the graph) {

if (v has no incomming edges) {
push(v,s);
mark v as visited;

}
}
while (!isEmpty(s)) {

let x be the node on the top of the stack s;
if (no unvisited nodes are adjacent to x) { // i.e. x has no unvisited successor

printf x;
pop(s); // blacktrack

} else {
select an unvisited node u adjacent to x;
push(u,s);
mark u as visited;

}
}
;


